4.7 Article

Graphene oxide derivatives with variable alkyl chain length and terminal functional groups as supports for stabilization of cytochrome c

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2015.12.023

关键词

Graphene-oxide; Nanomaterials; Cytochrome c; Immobilization; Nanobiocatalysis

资金

  1. Program IKYDA (IKY, Athens, Greece)
  2. Program IKYDA (DAAD, Bonn, Germany)

向作者/读者索取更多资源

In this study we report the ability of reduced and non-reduced graphene oxide-based nanomaterials (GONs), modified with variable alkyl chain length and terminal functional groups, to act as effective scaffolds for the immobilization of cytochrome c (cyt c) using different immobilization procedures. The GONs/cyt c conjugates are characterized by a combination of techniques, namely atomic force microscopy, X-ray photoelectron and FT-IR spectroscopies as well as thermo-gravimetric and differential thermal analysis. The effect of the structure of functional groups and the surface chemistry of GONs on the immobilization efficiency, the peroxidase activity and the stability of the cyt c was investigated and correlated with conformational changes on the protein molecule upon immobilization. The enhanced thermal stability (up to 2-fold) and increased tolerance (up to 25-fold) against denaturing agents observed for immobilized cyt c, indicates that these functionalized GONs are suitable as nanoscaffolds for the development of robust nanobiocatalysts. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据