4.7 Article

A 3D Reconstruction Framework of Buildings Using Single Off-Nadir Satellite Image

期刊

REMOTE SENSING
卷 13, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/rs13214434

关键词

3D model reconstruction; building; satellite image; encoder-decoder network

资金

  1. National Natural Science Foundation of China [62071136, 61801142, 61971153, 62002083]

向作者/读者索取更多资源

In this paper, a novel framework for 3D reconstruction of buildings based on a single off-nadir satellite image is proposed. The framework consists of two convolutional neural networks, Scale-ONet and Optim-Net, which can generate water-tight mesh models with exact shape and rough scale of buildings, and reduce scale errors for these models, respectively. Experimental results show that the framework has good robustness for different input images and can achieve ideal reconstruction accuracy on both model shape and scale of buildings.
A novel framework for 3D reconstruction of buildings based on a single off-nadir satellite image is proposed in this paper. Compared with the traditional methods of reconstruction using multiple images in remote sensing, recovering 3D information that utilizes the single image can reduce the demands of reconstruction tasks from the perspective of input data. It solves the problem that multiple images suitable for traditional reconstruction methods cannot be acquired in some regions, where remote sensing resources are scarce. However, it is difficult to reconstruct a 3D model containing a complete shape and accurate scale from a single image. The geometric constraints are not sufficient as the view-angle, size of buildings, and spatial resolution of images are different among remote sensing images. To solve this problem, the reconstruction framework proposed consists of two convolutional neural networks: Scale-Occupancy-Network (Scale-ONet) and model scale optimization network (Optim-Net). Through reconstruction using the single off-nadir satellite image, Scale-Onet can generate water-tight mesh models with the exact shape and rough scale of buildings. Meanwhile, the Optim-Net can reduce the error of scale for these mesh models. Finally, the complete reconstructed scene is recovered by Model-Image matching. Profiting from well-designed networks, our framework has good robustness for different input images, with different view-angle, size of buildings, and spatial resolution. Experimental results show that an ideal reconstruction accuracy can be obtained both on the model shape and scale of buildings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据