4.7 Article

Remote Sensing of Wave Overtopping on Dynamic Coastal Structures

期刊

REMOTE SENSING
卷 14, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/rs14030513

关键词

overtopping; Lidar; 2D laser scanners; dynamic cobble berm revetment; coastal protection; coastal flooding

向作者/读者索取更多资源

The development of coastal regions and rising sea levels have increased the risk of coastal flooding. Traditional methods for measuring wave overtopping are not suitable for dynamically stable coastal protection structures. This study explores the potential use of 2D laser scanners to remotely sense the flow volumes overtopping a porous dynamic revetment and proposes two analysis methods to estimate the overtopping volumes.
The development of coastal regions combined with rising sea levels is leading to an increasing risk of coastal flooding caused by wave overtopping of natural beaches and engineered coastal structures. Previous measurements of wave overtopping have been obtained for static coastal structures using fixed current meters and depth sensors or tanks. These are unsuitable for dynamically stable coastal protection structures however, because the geometry of these structures is expected to evolve under wave action. This study investigates the potential to use elevated 2D laser scanners (Lidar) to remotely sense the flow volumes overtopping the time-varying crest of a porous dynamic cobble berm revetment. Two different analysis methods were used to estimate the wave-by-wave overtopping volumes from measurements of the time-varying free surface elevation with good agreement. The results suggest that the commonly used EurOtop parameterisation can be used to estimate overtopping discharge to an acceptable precision. An advantage of the remote sensing approach reported here is that it enables the spatial distribution of overtopping discharge and infiltration rate to be measured. It was found that the overtopping discharge on a porous dynamic revetment decays rapidly landward of the structure crest, and that this has implications for safety and structure design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据