4.7 Article

The Performance of Commonly Used Surface-Based Instruments for Measuring Visibility, Cloud Ceiling, and Humidity at Cold Lake, Alberta

期刊

REMOTE SENSING
卷 13, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/rs13245058

关键词

ceilometer and radiometric profiling; visibility; cloud base height; relative humidity

向作者/读者索取更多资源

Data from automated meteorological instruments are used for model validation and aviation applications, however, their measurement accuracy has not been fully tested. This study tested various ground-based instruments at Cold Lake Airport in Canada and found that visibility measured by FSPWs showed good correlation under different conditions, but there were quantization issues when compared to human observation.
Data from automated meteorological instruments are used for model validation and aviation applications, but their measurement accuracy has not being adequately tested. In this study, a number of ground-based in-situ, remote-sensing instruments that measure visibility (VIS), cloud base height (CBH), and relative humidity (RH) were tested against data obtained using standard reference instruments and human observations at Cold Lake Airport, Alberta, Canada. The instruments included the Vaisala FS11P and PWD22 (FSPW), a profiling microwave radiometer (MWR), the Jenoptik ceilometer, Rotronic, Vaisala WXT520, AES-Dewcell RH, and temperature sensors. The results showed that the VIS measured using the FSPWs were well correlated with a correlation coefficient (R) of 0.84 under precipitation conditions and 0.96 during non-precipitating conditions (NPC), indicating very good agreement. However, the FS11P on average measured higher VIS, particularly under NPC. When the FSPWs were compared against human observation, a significant quantization in the data was observed, but less was noted during daytime compared to nighttime. Both probes measured higher VIS compared to human observation, and the calculated R was close to 0.6 for both probes. When the FSPWs were compared against human observation for VIS < 4 km, the calculated mean difference (MD) for the PWD22 (MD approximate to 0.98 km) was better than the FS11P (MD approximate to 1.37 km); thus, the PWD22 was slightly closer to human observation than the FS11P. No significant difference was found between daytime and nighttime measured VIS as compared to human observation; the instruments measured slightly higher VIS. Two extinction parameterizations as functions of snowfall rate were developed based on the VFPs measurements, and the results were similar. The Jenoptik ceilometer generally measured lower CBH than human observation, but the MWR measured larger CBHs for values <2 km, while CBHs were underestimated for higher CBHs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据