4.7 Article

Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering

期刊

POLYMERS
卷 13, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/polym13203453

关键词

3D scaffolds; biomaterial engineering; tissue engineering; mesenchymal stem cells; polymeric foams; surface functionalization; protein nanoparticles; cell growth; compressed fluids; Freon R134a

资金

  1. Spanish Ministry of Economy and Competitiveness [MOTHER MAT2016-80826-R, Mol4Bio PID2019-105622RBI00]
  2. Spanish Ministry of Science, Innovation and Universities [RTI2018-095159-B-100]
  3. Instituto de Salud Carlos III (ISCIII)-European Regional Development Fund (ERDF)
  4. MINECO-AES [PI15/00752, PI15/01118, PI18/00643]
  5. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)
  6. CSIC [2019AEP133]
  7. Comunidad Autonoma de Madrid [S2013/MIT-2862]
  8. Generalitat de Catalunya [2017-SGR-918, 2017-SGR-229]
  9. Fundacio Marato de TV3 [201812]
  10. COST Action [CA15126]
  11. European Social Fund
  12. EU [NFFA-654360]
  13. Generalitat de Catalunya (CERCA Programme)

向作者/读者索取更多资源

This study demonstrates for the first time the use of Freon R134a for generating porous polymer matrices with larger pore sizes and better mechanical properties compared to conventional scCO(2) processing. MSCs attached to PLA scaffolds processed with Freon R134a exhibited good metabolic activity and displayed spread morphology with a well-organized actin cytoskeleton. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles significantly enhanced the scaffolds' cytocompatibility.
Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO(2)) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds processed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical properties compared with those achieved by scCO(2) processing. PLGA scaffolds processed with Freon R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells (MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioactive factors, enhanced the scaffolds' cytocompatibility. These findings indicate that gas foaming using compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication technology to produce polymeric scaffolds for tissue engineering approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据