4.7 Article

Fresh Properties and Sulfuric Acid Resistance of Sustainable Mortar Using Alkali-Activated GGBS/Fly Ash Binder

期刊

POLYMERS
卷 14, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/polym14030591

关键词

alkali-activated fly ash and slag; concrete durability; sorptivity; alkaline activator ratio; decrease of CO2 emissions; sulphuric acid; compressive strength

资金

  1. Office of Research and Sponsored Programs at Abu Dhabi University [19300521, 19300460]
  2. ASPIRE Award for Research Excellence (AARE), Abu Dhabi, United Arab Emirates

向作者/读者索取更多资源

This study evaluates the properties of mortars using alkali-activated GGBS and fly ash binders, including sorptivity, setting time, resistance to sulfuric acid, and compressive strength. The experimental results show that these mortars exhibit good water absorption, sulfuric acid resistance, and compressive strength. The best compressive strength is achieved with a binder consisting of 75%GGBS + 25% fly ash.
In this study, sorptivity, setting time, resistance to sulfuric acid, and compressive strength of mortars that use alkali-activated GGBS and fly ash as binders, were evaluated experimentally. The activation of binders, was achieved at room temperature of 22 +/- 2 degrees C using combinations of sodium silicates (Na2SiO3) and sodium hydroxide (NaOH) solutions in ratios of 1.5, 2.0, and 2.5. The parameters considered in terms of their effects on fresh and hardened properties include: NaOH molarity, activator ratio Na2SiO3/NaOH, mortar sample age, and relative amount of GGBS/fly ash in binder combination. Sorptivity, change in mass, and compressive strength were determined for mortar samples that were submerged in 10% sulfuric acid solution for 7 days, 28 days, and 90 days. The binder for mortar samples tested at each of the specified ages consisted of 100% GGBS (G100), 75%GGBS+25% fly ash (G75F25), or 50% GGBS + 50% fly ash (G50F50). The binder was activated using Na2SiO3 solution, combined with 10 M, 12 M, 14 M, or 16 M NaOH solution. It was found that sorptivity decreases with increase in curing age, for all activator ratios, concentrations, and relative amounts of GGBS/fly ash. Binder consisting of 75%GGBS + 25% fly ash with NaOH concentration of 12 M had the lowest sorptivity. Exposure of alkali-activated GGBS/fly ash mortar samples to sulfate attack did not cause loss in mass nor visible signs of damage/deterioration. All binder combinations experienced increase in compressive strength after curing in 10%sufluric acid solution, with the optimum G75F25 mix achieving a 28-day strength of 80.53 MPa when NaOH molarity is 10 M, which increased to 91.06 MPa after 90 days. Variation in concentration of NaOH didn't cause significant change in the magnitudes of 28-day or 90-day compressive strengths of G50F50. However, despite slow dissolution of fly ash and immersion in 10% sulfuric acid solution, G50F50 developed 28-day compressive strength of 56.23 MPa and 90-day compressive of 86.73 MPa, which qualifies G50F50 as high strength mortar for practical purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据