4.7 Article

Enhancement of Electrochemical Detection of Gluten with Surface Modification Based on Molecularly Imprinted Polymers Combined with Superparamagnetic Iron Oxide Nanoparticles

期刊

POLYMERS
卷 14, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/polym14010091

关键词

gluten; magnetic molecularly imprinted polymers; electrochemical analysis

向作者/读者索取更多资源

Novel molecularly imprinted polymers (MIPs) functionalized with superparamagnetic nanoparticles (SPIONs) were successfully developed for gluten detection. The modified electrode surface morphology was characterized by scanning electron microscopy-energy-dispersive X-ray spectrometry. The performance of the MIP electrode was evaluated using cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The MMIP electrode exhibited a dynamic linear range of 5-50 ppm, a detection limit of 1.50 ppm, and excellent selectivity, sensitivity, stability, and reproducibility.
Novel molecularly imprinted polymers (MIPs) represent a selectively recognized technique for electrochemical detection design. This rapid and simple method prepared via chemical synthesis consists of a monomer crosslinked with an initiator, whereas low sensitivity remains a drawback. Nanomaterials can improve charge transfer for MIP surface modification in order to overcome this problem. SPIONs have semiconductor and superparamagnetic properties that can enhance carrier mobility, causing high sensitivity of electrochemical detection. In this work, surface modification was achieved with a combination of MIP and SPIONs for gluten detection. The SPIONs were synthesized via the chemical co-precipitation method and mixed with MIPs by polymerizing gluten and methyl methacrylate (MMA), presented as a template and a monomer. Magnetic MIP (MMIP) was modified on a carbon-plate electrode. The morphology of modified electrode surfaces was determined by scanning electron microscopy-energy-dispersive X-ray spectrometry. The performance of the MMIP electrode was confirmed by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy. The MMIP electrode for gluten detection shows a dynamic linear range of 5-50 ppm, with a correlation coefficient of 0.994 and a low detection limit of 1.50 ppm, which is less than the U.S. Food and Drug Administration requirements (20 ppm); moreover, it exhibits excellent selectivity, sensitivity, stability, and reproducibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据