4.7 Review

Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations

期刊

POLYMERS
卷 13, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/polym13203510

关键词

halloysite nanotubes; biopolymer; clay/polymer composites ; electron microscopy; biofilms; antimicrobials

资金

  1. Russian Science Foundation [19-79-30091]
  2. Russian Science Foundation [19-79-30091] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

Halloysite, a tubular clay nanomaterial with oppositely charged surfaces, is a promising material for biopolymer composites with applications in drug delivery, food packaging, and anti-microbial coatings. Advanced characterization techniques like electron microscopy provide valuable insights into the structure and composition of these composites.
Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据