4.7 Article

Wood Warping Composite by 3D Printing

期刊

POLYMERS
卷 14, 期 4, 页码 -

出版社

MDPI
DOI: 10.3390/polym14040733

关键词

3D printing; nanocellulose; shape programming; wood

向作者/读者索取更多资源

This article presents an investigation on wood warped objects fabricated by 3D printing. The printing pathway and flow rate can be predesigned to control the resulting structure after drying. By carefully tuning the flow rate and printing pathway, the morphology of the fully dried wooden objects can be controlled.
Wood warping is a phenomenon known as a deformation in wood that occurs when changes in moisture content cause an unevenly volumetric change due to fiber orientation. Here we present an investigation of wood warped objects that were fabricated by 3D printing. Similar to natural wood warping, water evaporation causes volume decrease of the printed object, but in contrast, the printing pathway pattern and flow rate dictate the direction of the alignment and its intensity, all of which can be predesigned and affect the resulting structure after drying. The fabrication of the objects was performed by an extrusion-based 3D printing technique that enables the deposition of water-based inks into 3D objects. The printing ink was composed of 100% wood-based materials, wood flour, and plant-extracted natural binders cellulose nanocrystals, and xyloglucan, without the need for any additional synthetic resins. Two archetypal structures were printed: cylindrical structure and helices. In the former, we identified a new length scale that gauges the effect of gravity on the shape. In the latter, the structure exhibited a shape transition analogous to the opening of a seedpod, quantitatively reproducing theoretical predictions. Together, by carefully tuning the flow rate and printing pathway, the morphology of the fully dried wooden objects can be controlled. Hence, it is possible to design the printing of wet objects that will form different final 3D structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据