4.7 Article

Predicting the Mechanical Response of Polyhydroxyalkanoate Biopolymers Using Molecular Dynamics Simulations

期刊

POLYMERS
卷 14, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/polym14020345

关键词

PHAs; atomistic simulations; polymer design; property predictions; chemical trends

资金

  1. Laboratory Directed Research and Development program of Los Alamos National Laboratory [20200688PRD2, 20190001DR]
  2. [89233218CNA000001]

向作者/读者索取更多资源

Polyhydroxyalkanoates (PHAs) are promising biosynthesizable, biocompatible, and biodegradable polymers that can replace petroleum-based plastics to address plastic pollution. However, the structure-property relationships and experimental data on the mechanical properties of PHAs are limited. In this study, molecular dynamics simulations were used to predict the mechanical properties of PHAs. The results show that Young's modulus and yield stress decrease with increasing carbon atom number in the side chain and polymer backbone. The mechanical properties are also strongly correlated with the chemical nature of the functional group.
Polyhydroxyalkanoates (PHAs) have emerged as a promising class of biosynthesizable, biocompatible, and biodegradable polymers to replace petroleum-based plastics for addressing the global plastic pollution problem. Although PHAs offer a wide range of chemical diversity, the structure-property relationships in this class of polymers remain poorly established. In particular, the available experimental data on the mechanical properties is scarce. In this contribution, we have used molecular dynamics simulations employing a recently developed forcefield to predict chemical trends in mechanical properties of PHAs. Specifically, we make predictions for Young's modulus, and yield stress for a wide range of PHAs that exhibit varying lengths of backbone and side chains as well as different side chain functional groups. Deformation simulations were performed at six different strain rates and six different temperatures to elucidate their influence on the mechanical properties. Our results indicate that Young's modulus and yield stress decrease systematically with increase in the number of carbon atoms in the side chain as well as in the polymer backbone. In addition, we find that the mechanical properties were strongly correlated with the chemical nature of the functional group. The functional groups that enhance the interchain interactions lead to an enhancement in both the Young's modulus and yield stress. Finally, we applied the developed methodology to study composition-dependence of the mechanical properties for a selected set of binary and ternary copolymers. Overall, our work not only provides insights into rational design rules for tailoring mechanical properties in PHAs, but also opens up avenues for future high throughput atomistic simulation studies geared towards identifying functional PHA polymer candidates for targeted applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据