4.7 Article

Functional analysis of ADARs in planarians supports a bilaterian ancestral role in suppressing double-stranded RNA-response

期刊

PLOS PATHOGENS
卷 18, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1010250

关键词

-

资金

  1. Gruss Lipper Post Doctoral Fellowship
  2. Ben-Gurion University of the Negev startup grant

向作者/读者索取更多资源

The involvement of ADARs in regulating anti-viral responses is conserved in planarians, and it suggests that ADARs' role in suppressing abnormal anti-viral responses is an ancient evolutionary invention shared by many organisms.
Author summaryToday, more than ever, it is crucial to gain a deep understating of our anti-viral defenses. One of the ways to accomplish it is to study the principles governing anti-viral responses across various organisms. ADARs are a group of proteins that act on RNA molecules and alter their sequence compared to the genes that encode them (a process termed RNA editing). In recent years, ADARs have been shown to suppress abnormal anti-viral responses triggered by self-components of the cell (RNA encoded by the cell). Here, we show that the involvement of ADARs in anti-viral response regulation is conserved in planarians (free-living flatworms). We identified two ADAR proteins in planarian and showed that eliminating one (ADAR1) results in animal death and that an anti-viral response commenced in the absence of either ADAR1 or ADAR2. We further identified one of the proteins (PRLR1) that participate in initiating this anti-viral response in planarians, which its mammalian counterpart (MDA5) serves a similar role. Thus, our work suggests that ADARs involvement in suppressing aberrant anti-viral response is an ancient evolutionary invention and is likely shared by many organisms. ADARs (adenosine deaminases acting on RNA) are known for their adenosine-to-inosine RNA editing activity, and most recently, for their role in preventing aberrant dsRNA-response by activation of dsRNA sensors (i.e., RIG-I-like receptor homologs). However, it is still unclear whether suppressing spurious dsRNA-response represents the ancestral role of ADARs in bilaterians. As a first step to address this question, we identified ADAR1 and ADAR2 homologs in the planarian Schmidtea mediterranea, which is evolutionarily distant from canonical lab models (e.g., flies and nematodes). Our results indicate that knockdown of either planarian adar1 or adar2 by RNA interference (RNAi) resulted in upregulation of dsRNA-response genes, including three planarian rig-I-like receptor (prlr) homologs. Furthermore, independent knockdown of adar1 and adar2 reduced the number of infected cells with a dsRNA virus, suggesting they suppress a bona fide anti-viral dsRNA-response activity. Knockdown of adar1 also resulted in lesion formation and animal lethality, thus attesting to its essentiality. Simultaneous knockdown of adar1 and prlr1 rescued adar1(RNAi)-dependent animal lethality and rescued the dsRNA-response, suggesting that it contributes to the deleterious effect of adar1 knockdown. Finally, we found that ADAR2, but not ADAR1, mediates mRNA editing in planarians, suggesting at least in part non-redundant activities for planarians ADARs. Our results underline the essential role of ADARs in suppressing activation of harmful dsRNA-response in planarians, thus supporting it as their ancestral role in bilaterians. Our work also set the stage to study further and better understand the regulatory mechanisms governing anti-viral dsRNA-responses from an evolutionary standpoint using planarians as a model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据