4.7 Article

eIF4A, a target of siRNA derived from rice stripe virus, negatively regulates antiviral autophagy by interacting with ATG5 in Nicotiana benthamiana

期刊

PLOS PATHOGENS
卷 17, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1009963

关键词

-

资金

  1. National Natural Science Foundation of China [31772239, 31901849]
  2. National Transgenic Science and Technology Program [2016ZX08001-002]
  3. Natural Science Foundation of Ningbo [2019A610408]
  4. K.C. Wong Magna Fund of Ningbo University

向作者/读者索取更多资源

eIF4A acts as a negative regulator of autophagy in plants and plays a crucial role in antiviral defense mechanisms.
Autophagy is induced by viral infection and has antiviral functions in plants, but the underlying mechanism is poorly understood. We previously identified a viral small interfering RNA (vsiRNA) derived from rice stripe virus (RSV) RNA4 that contributes to the leaf-twisting and stunting symptoms caused by this virus by targeting the host eukaryotic translation initiation factor 4A (eIF4A) mRNA for silencing. In addition, autophagy plays antiviral roles by degrading RSV p3 protein, a suppressor of RNA silencing. Here, we demonstrate that eIF4A acts as a negative regulator of autophagy in Nicotiana benthamiana. Silencing of NbeIF4A activated autophagy and inhibited RSV infection by facilitating autophagic degradation of p3. Further analysis showed that NbeIF4A interacts with NbATG5 and interferes with its interaction with ATG12. Overexpression of NbeIF4A suppressed NbATG5-activated autophagy. Moreover, expression of vsiRNA-4A, which targets NbeIF4A mRNA for cleavage, induced autophagy by silencing NbeIF4A. Finally, we demonstrate that eIF4A from rice, the natural host of RSV, also interacts with OsATG5 and suppresses OsATG5-activated autophagy, pointing to the conserved function of eIF4A as a negative regulator of antiviral autophagy. Taken together, these results reveal that eIF4A negatively regulates antiviral autophagy by interacting with ATG5 and that its mRNA is recognized by a virus-derived siRNA, resulting in its silencing, which induces autophagy against viral infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据