4.6 Article

HillTau: A fast, compact abstraction for model reduction in biochemical signaling networks

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 17, 期 11, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1009621

关键词

-

资金

  1. NCBS-TIFR
  2. Department of Atomic Energy, Government of India [RTI 4006]
  3. Department of Science and Technology [DST/INT/SWD/VR/P-09/2016]

向作者/读者索取更多资源

Chemical signals play a crucial role in cell computations, and modeling these complex networks can be challenging. HillTau provides a simplified way to model these networks, condensing multiple reaction steps into single steps defined by a small number of parameters. It is fast, simple, and fits well with full chemical formulations, making it a valuable tool for modeling signaling network functions and fitting complicated networks. HillTau is especially useful for system abstraction, model reduction, data-driven optimization, and fast approximations to complex cellular signaling.
Author summaryChemical signals mediate many computations in cells, from housekeeping functions in all cells to memory and pattern selectivity in neurons. These signals form complex networks of interactions. Computer models are a powerful way to study how such networks behave, but it is hard to get all the chemical details for typical models, and it is slow to run them with standard numerical approaches to chemical kinetics. We introduce HillTau as a simplified way to model complex chemical networks. HillTau models condense multiple reaction steps into single steps defined by a small number of parameters for activation and settling time. As a result the models are simple, easy to find values for, and they run quickly. Remarkably, they fit the full chemical formulations rather well. We illustrate the utility of HillTau for modeling several signaling network functions, and for fitting complicated signaling networks. Signaling networks mediate many aspects of cellular function. The conventional, mechanistically motivated approach to modeling such networks is through mass-action chemistry, which maps directly to biological entities and facilitates experimental tests and predictions. However such models are complex, need many parameters, and are computationally costly. Here we introduce the HillTau form for signaling models. HillTau retains the direct mapping to biological observables, but it uses far fewer parameters, and is 100 to over 1000 times faster than ODE-based methods. In the HillTau formalism, the steady-state concentration of signaling molecules is approximated by the Hill equation, and the dynamics by a time-course tau. We demonstrate its use in implementing several biochemical motifs, including association, inhibition, feedforward and feedback inhibition, bistability, oscillations, and a synaptic switch obeying the BCM rule. The major use-cases for HillTau are system abstraction, model reduction, scaffolds for data-driven optimization, and fast approximations to complex cellular signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据