4.6 Article

Individual risk perception and empirical social structures shape the dynamics of infectious disease outbreaks

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 18, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.1009760

关键词

-

向作者/读者索取更多资源

The perception of epidemic risk by individuals plays a crucial role in determining compliance with control measures. A mathematical model is developed to study the impact of non-compliant individuals on epidemic dynamics, taking into account different social contact structures. The study finds a one-to-one relationship between perceived risk and compliance with mitigation rules, and shows that epidemic spreading is hindered when the population fraction of risk-denier individuals decreases. The findings highlight the importance of risk awareness and social contact patterns in managing disease outbreaks.
The dynamics of a spreading disease and individual behavioral changes are entangled processes that have to be addressed together in order to effectively manage an outbreak. Here, we relate individual risk perception to the adoption of a specific set of control measures, as obtained from an extensive large-scale survey performed via Facebook-involving more than 500,000 respondents from 64 countries-showing that there is a one-to-one relationship between perceived epidemic risk and compliance with a set of mitigation rules. We then develop a mathematical model for the spreading of a disease-sharing epidemiological features with COVID-19-that explicitly takes into account non-compliant individual behaviors and evaluates the impact of a population fraction of infectious risk-deniers on the epidemic dynamics. Our modeling study grounds on a wide set of structures, including both synthetic and more than 180 real-world contact patterns, to evaluate, in realistic scenarios, how network features typical of human interaction patterns impact the spread of a disease. In both synthetic and real contact patterns we find that epidemic spreading is hindered for decreasing population fractions of risk-denier individuals. From empirical contact patterns we demonstrate that connectivity heterogeneity and group structure significantly affect the peak of hospitalized population: higher modularity and heterogeneity of social contacts are linked to lower peaks at a fixed fraction of risk-denier individuals while, at the same time, such features increase the relative impact on hospitalizations with respect to the case where everyone correctly perceive the risks. Author summary The spreading of a disease across a population is affected by the compliance with behavioral restrictions, enforced by governments to slow the diffusion of an epidemic. In this study, we use a large-scale survey to relate compliance with behavioral rules to individual level of disease risk perception. We asses that absence of risk awareness is associated with a set of harmful behaviors (namely, non-compliance with: social distancing, use of facial masks and adoption of any prevention measures) that can accelerate the diffusion of an epidemic. Through a mathematical model, we study how epidemic dynamics, and in particular hospitalization burden, is affected by the presence of different fractions of the total population who do not correctly perceive the disease risk and, accordingly, adopt harmful behaviors. Moreover, we study how different social contact structures among individuals modulate the effect on epidemic spreading of a fixed population fraction with null risk perception. Our findings highlight that a fixed percentage of people with null risk awareness has a lower impact on epidemic size in social structures characterized by communities and heterogeneity in contacts among individuals. The spreading of a disease across a population is affected by the compliance with behavioral restrictions, enforced by governments to slow the diffusion of an epidemic. In this study, we use a large-scale survey to relate compliance with behavioral rules to individual level of disease risk perception. We asses that absence of risk awareness is associated with a set of harmful behaviors (namely, non-compliance with: social distancing, use of facial masks and adoption of any prevention measures) that can accelerate the diffusion of an epidemic. Through a mathematical model, we study how epidemic dynamics, and in particular hospitalization burden, is affected by the presence of different fractions of the total population who do not correctly perceive the disease risk and, accordingly, adopt harmful behaviors. Moreover, we study how different social contact structures among individuals modulate the effect on epidemic spreading of a fixed population fraction with null risk perception. Our findings highlight that a fixed percentage of people with null risk awareness has a lower effectiveness on epidemic size in social structures characterized by communities and heterogeneity in contacts among individuals. However, in these same social structures, larger fractions of risk-denying population cause an enhanced effect on epidemic size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据