4.7 Article

Blue Phase III: Topological Fluid of Skyrmions

期刊

PHYSICAL REVIEW X
卷 12, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.12.011003

关键词

-

资金

  1. Slovenian Research Agency (ARRS) [P1-0099, PR08332, J1-1697, J1-2462, N10195, P1-0192]

向作者/读者索取更多资源

The study confirms that the blue phase III is a three-dimensional fluid composed of chiral skyrmion filaments and topological defect line networks, which can be transformed into a two-dimensional half-skyrmion liquid under temperature influence. This finding has potential implications for skyrmionic applications in a broad temperature range.
Skyrmions are topologically protected, vortexlike formations of a field that cannot be removed by any smooth transformation and emerge in a range of fundamentally different, either quantum or classical systems, from spin textures to chiral ferromagnets and chiral complex fluids. Notably, they are generally observed in thin ordered or disordered quasi-2D layers, but little is known about their three-dimensional structuring and organization, including structural transitions from 2D to 3D. Here, we show experimentally and numerically that the blue phase (BP) III of a chiral liquid crystal is a 3D fluid of chiral skyrmion filaments of the nematic orientational field, entangled with a 3D network of topological defect lines. It is an effective 3D dynamic fluid determined by the thermal fluctuations of two distinct branches of excitations: rapid internal fluctuations of the skyrmion structure and a slow collective motion of the skyrmion filaments. When confined to less than an approximately 150-nm layer, the 3D bulk skyrmion fluid transforms into a different effectively 2D liquid of half-skyrmions, with the dynamics of the skyrmion liquid slowing down by an order of magnitude and with the individual skyrmions lingering, and even disappearing into, and reappearing from the homogeneous liquid crystal. The thickness-temperature phase diagram actually shows that both the BPIII and BPI phases are made of skyrmions, which when confined to less than approximately 150 nm cells transform equally into a 2D half-skyrmion liquid. The temperature range of this 2D half-skyrmion liquid is much broader than the temperature interval of BP phases, which makes BP materials interesting for broad-temperature-range skyrmionic applications. We envisage a soft matter skyrmionic device, in which skyrmions are created and detected by light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据