4.7 Article

Directional Electromagnetic Interference Shielding Based on Step-Wise Asymmetric Conductive Networks

期刊

NANO-MICRO LETTERS
卷 14, 期 1, 页码 -

出版社

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-021-00743-y

关键词

Solution encapsulation; Step-wise asymmetry; Directional electromagnetic interference shielding; Electrical conductivity; Vacuum-assisted self-assembly

资金

  1. Shanghai Jiao Tong University

向作者/读者索取更多资源

This study introduces a directional electromagnetic interference (EMI) shielding composite with a step-wise asymmetric structure, which consists of nickel-coated melamine foam layers and multi-walled carbon nanotube layers. The composite exhibits excellent EMI shielding effectiveness due to its unique structure and high electrical conductivity.
Some precision electronics such as signal transmitters need to not only emit effective signal but also be protected from the external electromagnetic (EM) waves. Thus, directional electromagnetic interference (EMI) shielding materials (i.e., when the EM wave is incident from different sides of the sample, the EMI shielding effectiveness (SE) is rather different) are strongly required; unfortunately, no comprehensive literature report is available on this research field. Herein, Ni-coated melamine foams (Ni@MF) were obtained by a facile electroless plating process, and multiwalled carbon nanotube (CNT) papers were prepared via a simple vacuum-assisted self-assembly approach. Then, step-wise asymmetric poly(butylene adipate-co-terephthalate) (PBAT) composites consisting of loose Ni@MF layer and compact CNT layer were successfully fabricated via a facile solution encapsulation approach. The step-wise asymmetric structures and electrical conductivity endow the Ni@MF/CNT/PBAT composites with unprecedented directional EMI shielding performances. When the EM wave is incident from Ni@MF layer or CNT layer, Ni@MF-5/CNT-75/PBAT exhibits the total EMI SE (SET) of 38.3 and 29.5 dB, respectively, which illustrates the Delta SET of 8.8 dB. This work opens a new research window for directional EMI shielding composites with step-wise asymmetric structures, which has promising applications in portable electronics and next-generation communication technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据