4.7 Article

Room-Temperature Assembled MXene-Based Aerogels for High Mass-Loading Sodium-Ion Storage

期刊

NANO-MICRO LETTERS
卷 14, 期 1, 页码 -

出版社

SHANGHAI JIAO TONG UNIV PRESS
DOI: 10.1007/s40820-021-00781-6

关键词

MXenes; Aerogel; Room-temperature assembly; Interfacial engineering; Sodium-ion storage

资金

  1. National Natural Science Foundation of China [52071137, 51977071, 51802040, 21802020]
  2. Science and Technology Innovation Program of Hunan Province [2021RC3066, 2021RC3067]
  3. Natural Science Foundation of Hunan Province [2020JJ3004, 2020JJ4192]
  4. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

This study reports on the low-temperature assembly of MXene nanosheets into robust three-dimensional aerogels. By using suitable cross-linking agents, graphene oxide-assisted assembly of Ti3C2Tx MXene aerogel with high Ti3C2Tx content and robustness was achieved. Further modification allowed for the use of this aerogel as a freestanding anode for sodium-ion storage, demonstrating promising electrochemical performances.
Low-temperature assembly of MXene nanosheets into three-dimensional (3D) robust aerogels addresses the crucial stability concern of the nano-building blocks during the fabrication process, which is of key importance for transforming the fascinating properties at the nanoscale into the macroscopic scale for practical applications. Herein, suitable cross-linking agents (amino-propyltriethoxysilane, Mn2+, Fe2+, Zn2+, and Co2+) as interfacial mediators to engineer the interlayer interactions are reported to realize the graphene oxide (GO)-assisted assembly of Ti3C2Tx MXene aerogel at room temperature. This elaborate aerogel construction not only suppresses the oxidation degradation of Ti3C2Tx but also generates porous aerogels with a high Ti3C2Tx content (87 wt%) and robustness, thereby guaranteeing the functional accessibility of Ti3C2Tx nanosheets and operational reliability as integrated functional materials. In combination with a further sulfur modification, the Ti3C2Tx aerogel electrode shows promising electrochemical performances as the freestanding anode for sodium-ion storage. Even at an ultrahigh loading mass of 12.3 mg cm(-2), a pronounced areal capacity of 1.26 mAh cm(-2) at a current density of 0.1 A g(-1) has been achieved, which is of practical significance. This work conceptually suggests a new way to exert the utmost surface functionalities of MXenes in 3D monolithic form and can be an inspiring scaffold to promote the application of MXenes in different areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据