4.2 Article

MicroRNA-489 Promotes the Apoptosis of Cardiac Muscle Cells in Myocardial Ischemia-Reperfusion Based on Smart Healthcare

期刊

JOURNAL OF HEALTHCARE ENGINEERING
卷 2022, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2022/2538769

关键词

-

资金

  1. Scientific Research Project of Qiqihar Science and Technology Bureau [SFGG-201955]

向作者/读者索取更多资源

With the development of information technology, the concept of smart healthcare has gained increasing attention. This study investigated the role of miR-489 in myocardial ischemia-reperfusion injury (MIRI) and found that miR-489 can promote apoptosis of cardiac muscle cells by inhibiting the SPIN1-mediated PI3K/AKT pathway. This research provides a potential therapeutic target for reducing myocardial cell apoptosis after ischemia-reperfusion.
With the development of information technology, the concept of smart healthcare has gradually come to the fore. Smart healthcare uses a new generation of information technologies, such as the Internet of Things (loT), big data, cloud computing, and artificial intelligence, to transform the traditional medical system in an all-around way, making healthcare more efficient, more convenient, and more personalized. miRNAs can regulate the proliferation, differentiation, and apoptosis of human cells. Relevant studies have also shown that miRNAs may play a key role in the occurrence and development of myocardial ischemia-reperfusion injury (MIRI). This study aims to explore the effects of miR-489 in MIRI. In this study, miR-489 expression in a myocardial ischemia-reperfusion animal model and H9C2 cells induced by H/R was detected by qRT-PCR. The release of lactate dehydrogenase (LDH) and the activity of creatine kinase (CK) was detected after miR-489 knockdown in H9C2 cells induced by H/R. The apoptosis of H9C2 cells and animal models were determined by ELISA. The relationship between miR-489 and SPIN1 was verified by a double fluorescence reporter enzyme assay. The expression of the PI3K/AKT pathway-related proteins was detected by Western blot. Experimental results showed that miR-489 was highly expressed in cardiac muscle cells of the animal model and in H9C2 cells induced by H/R of the myocardial infarction group, which was positively associated with the apoptosis of cardiac muscle cells with ischemia-reperfusion. miR-489 knockdown can reduce the apoptosis of cardiac muscle cells caused by ischemiareperfusion. In downstream targeting studies, it was found that miR-489 promotes the apoptosis of cardiac muscle cells after ischemia-reperfusion by targeting the inhibition of the SPIN1-mediated PI3K/AKT pathway. In conclusion, high expression of miR-489 is associated with increased apoptosis of cardiac muscle cells after ischemia-reperfusion, which can promote the apoptosis after ischemia-reperfusion by targeting the inhibition of the SPIN1-mediated PI3K/AKT pathway. Therefore, miR-489 can be one of the potential therapeutic targets for reducing the apoptosis of cardiac muscle cells after ischemia-reperfusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据