4.7 Article

Integrated Analysis of Fatty Acid Metabolism and Transcriptome Involved in Olive Fruit Development to Improve Oil Composition

期刊

FORESTS
卷 12, 期 12, 页码 -

出版社

MDPI
DOI: 10.3390/f12121773

关键词

olive fruit; olive oil; triacylglycerol; fatty acid metabolism; transcriptome; maturation stage

类别

向作者/读者索取更多资源

By analyzing the fatty acid composition and full-length transcriptome, this study revealed the molecular mechanism of fatty acid metabolism during olive fruit development. Multiple enzymes were found to be involved in fatty acid metabolism, contributing to a better understanding of the process during olive fruit maturation.
Olea europaea L. is an important oil crop with excellent nutritional properties. In this study, a full-length transcriptome combined with fatty acid composition was used to investigate the molecular mechanism of fatty acid (FA) metabolism of olive fruits at various stages of development (S1-S5). A total of 34 fatty acids (FAs) were measured using gas chromatography-mass spectrometry (GC-MS). All transcripts of FA metabolism during olive fruit development were studied, including glycolysis, fatty acid synthesis, triacylglycerol synthesis, and FA degradation. A total of 100 transcripts of 11 gene families, 68 transcripts of 12 gene families, 55 transcripts of 7 gene families, and 28 transcripts of 7 gene families were identified as encoding for enzymes involved in FA metabolism. Furthermore, one of the critical reactions in TAG metabolism is the activation of fatty acyl chains to fatty acyl CoA, which is catalyzed by long-chain acyl CoA synthetases (LACS). Phylogenetic analysis showed that 13 putative LACS-encoding genes clustered into five groups, of which two putative transcripts encoding LACS6/7 may participate in FA degradation. The aim of this study was to evaluate the fatty acid from synthesis to degradation pathways during olive fruit development to provide a better understanding of the molecular mechanism of FA metabolism during olive fruit maturation and provide information to improve the synthesis of oil components that are beneficial to human health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据