4.5 Article

Prey-driven behavioral habitat use in a low-energy ambush predator

期刊

ECOLOGY AND EVOLUTION
卷 11, 期 22, 页码 15601-15621

出版社

WILEY
DOI: 10.1002/ece3.8181

关键词

ambush hunting; camera traps; habitat selection; optimal foraging; prey availability; site selection; small mammals; timber rattlesnakes

向作者/读者索取更多资源

The study found that timber rattlesnakes do exhibit optimal foraging site selection based on prey availability, preferentially foraging where the probability of encountering prey is highest. The spatial distribution of cumulative small mammal encounters, rather than distribution of individual species, was highly predictive of snake foraging behavior.
Food acquisition is an important modulator of animal behavior and habitat selection that can affect fitness. Optimal foraging theory predicts that predators should select habitat patches to maximize their foraging success and net energy gain, likely achieved by targeting areas with high prey availability. However, it is debated whether prey availability drives fine-scale habitat selection for predators. We assessed whether an ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal foraging site selection based on the spatial distribution and availability of prey. We used passive infrared camera trap detections of potential small mammal prey (Peromyscus spp., Tamias striatus, and Sciurus spp.) to generate variables of prey availability across the study area and used whether a snake was observed in a foraging location or not to model optimal foraging in timber rattlesnakes. Our models of small mammal spatial distributions broadly predicted that prey availability was greatest in mature deciduous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity compared with Peromyscus spp. We found the spatial distribution of cumulative small mammal encounters (i.e., overall prey availability), rather than the distribution of any one species, to be highly predictive of snake foraging. Timber rattlesnakes appear to forage where the probability of encountering prey is greatest. Our study provides evidence for fine-scale optimal foraging in a low-energy, ambush predator and offers new insights into drivers of snake foraging and habitat selection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据