4.7 Article

Uniaxial and Coaxial Vertical Embedded Extrusion Bioprinting

期刊

ADVANCED HEALTHCARE MATERIALS
卷 11, 期 9, 页码 -

出版社

WILEY
DOI: 10.1002/adhm.202102411

关键词

bioprinting; coaxial; embedded; multimaterial; tissue engineering; vertically

资金

  1. Brigham Research Institute

向作者/读者索取更多资源

The study introduces a vertical embedded extrusion bioprinting technique that allows precise control of vertical structure characteristics and successfully reconstructs key structures of intestinal villi and hair follicles, partially restoring functionality in vitro.
The 3D bioprinting technologies have attracted increasing attention due to their flexibility in producing architecturally relevant tissue constructs. Here, a vertical embedded extrusion bioprinting strategy using uniaxial or coaxial nozzles is presented, which allows formation of vertical structures of homogeneous or heterogeneous properties. By adjusting the bioprinting parameters, the characteristics of the bioprinted vertical patterns can be precisely controlled. Using this strategy, two proof-of-concept applications in tissue biofabrication are demonstrated. Specifically, intestinal villi and hair follicles, two liner-shaped tissues in the human body, are successfully generated with the vertical embedded bioprinting method, reconstructing some of their key structures as well as restoring partial functions in vitro. Caco-2 cells in the bioprinted intestinal villus constructs proliferated and aggregated properly, also showing functional biomarker expressions such as ZO-1 and villin. Moreover, preliminary hair follicle structures featuring keratinized human keratinocytes and spheroid-shaped human dermal papilla cells are formed after vertical bioprinting and culturing. In summary, this vertical embedded extrusion bioprinting technique harnessing a uniaxial or coaxial format will likely bring further improvements in the reconstruction of certain human tissues and organs, especially those with a linear structure, potentially leading to wide utilities in tissue engineering, tissue model engineering, and drug discovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据