4.7 Article

Effect of topographic correction on forest change detection using spectral trend analysis of Landsat pixel-based composites

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jag.2015.09.003

关键词

Change detection; Landsat; Image compositing; Topographic correction

资金

  1. Canadian Space Agency (CSA) Government Related Initiatives Program (GRIP)
  2. Canadian Forest Service (CFS) of Natural Resources Canada
  3. NSERC

向作者/读者索取更多资源

Pixel-based image compositing enables production of large-area surface reflectance images that are largely devoid of clouds, cloud shadows, or haze. Change detection with spectral trend analysis uses a dense time series of images, such as pixel-based composites, to quantify the year, amount, and magnitude of landscape changes. Topographically-related shadows found in mountainous terrain may confound trend-based forest change detection approaches. In this study, we evaluate the impact of topographic correction on trend-based forest change detection outcomes by comparing the amount and location of changes identified on an image composite with and without a topographic correction. Moreover, we evaluated two different approaches to topographic correction that are relevant to pixel-based image composites: the first corrects each pixel according to the day of year (DOY) the pixel was acquired, whilst the second corrects all pixels to a single reference date (August 1st), which was also the target date for generating the pixel-based image composite. Our results indicate that a greater area of change is detected when no topographic correction is applied to the image composite, however, the difference in change area detected between no correction and either the DOY or the August 1st correction is minor and less than 1% (0.54-0.85%). The spatial correspondence of these different approaches is 96.2% for the DOY correction and 97.7% for the August 1st correction. The largest differences between the correction processes occur in valleys (0.71-1.14%), upper slopes (0.71-1.09%), and ridges (0.73-1.09%). While additional tests under different conditions and in other environments are encouraged, our results indicate that topographic correction may not be justified in change detection routines computing spectral trends from pixel-based composites. Crown Copyright (C) 2015 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据