4.7 Article

Quantitative imaging of ultrasound backscattered signals with information entropy for bone microstructure characterization

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-04425-y

关键词

-

资金

  1. Ministry of Science and Technology in Taiwan
  2. MOST [109-2223-E-182-001-MY3]
  3. Chang Gung Memorial Hospital at Linkou in Taiwan [CMRPD1L0081, CMRPD1L0251, CMRPD1K0421]

向作者/读者索取更多资源

This study proposed using entropy imaging to collect information on bone microstructures for ultrasound bone tissue characterization. The results indicated that ultrasound entropy imaging revealed changes in bone microstructures and showed high performance and sensitivity in detecting variation among different bone densities, as well as in discriminating different age groups and individuals with different osteoporosis risks.
Osteoporosis is a critical problem during aging. Ultrasound signals backscattered from bone contain information associated with microstructures. This study proposed using entropy imaging to collect the information in bone microstructures as a possible solution for ultrasound bone tissue characterization. Bone phantoms with different pounds per cubic foot (PCF) were used for ultrasound scanning by using single-element transducers of 1 (nonfocused) and 3.5 MHz (nonfocused and focused). Clinical measurements were also performed on lumbar vertebrae (L3 spinal segment) in participants with different ages (n = 34) and postmenopausal women with low or moderate-to-high risk of osteoporosis (n = 50; identified using the Osteoporosis Self-Assessment Tool for Taiwan). The signals backscattered from the bone phantoms and subjects were acquired for ultrasound entropy imaging by using sliding window processing. The independent t-test, one-way analysis of variance, Spearman correlation coefficient r(s), and the receiver operating characteristic (ROC) curve were used for statistical analysis. The results indicated that ultrasound entropy imaging revealed changes in bone microstructures. Using the 3.5-MHz focused ultrasound, small-window entropy imaging (side length: one pulse length of the transducer) was found to have high performance and sensitivity in detecting variation among the PCFs (r(s) = - 0.83; p < 0.05). Small-window entropy imaging also performed well in discriminating young and old participants (p < 0.05) and postmenopausal women with low versus moderate-to-high osteoporosis risk (the area under the ROC curve = 0.80; cut-off value = 2.65; accuracy = 86.00%; sensitivity = 71.43%; specificity = 88.37%). Ultrasound small-window entropy imaging has great potential in bone tissue characterization and osteoporosis assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据