4.7 Article

Intravital microscopic observation of the microvasculature during hemodialysis in healthy rats

期刊

SCIENTIFIC REPORTS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-03681-2

关键词

-

资金

  1. Lawson Health Research Fund IRF [20-18]

向作者/读者索取更多资源

Hemodialysis is a life-saving treatment for kidney failure, but it is associated with a high mortality rate due to cardiovascular disease. This study successfully developed a small animal model to assess the microvascular consequences of hemodialysis. The results showed that even in healthy animals, hemodialysis can cause disturbances in systemic hemodynamics and disrupt microvascular perfusion. This study highlights the importance of investigating hemodialysis-induced ischemic organ injury and potential interventions to reduce it.
Hemodialysis (HD) provides life-saving treatment for kidney failure. Patient mortality is extremely high, with cardiovascular disease (CVD) being the leading cause of death. This results from both a high underlying burden of cardiovascular disease, as well as additional physiological stress from the HD procedure itself. Clinical observations indicate that HD is associated with microvascular dysfunction (MD), underlining the need for a fundamental pathophysiological assessment of the microcirculatory consequences of HD. We therefore successfully developed an experimental small animal model, that allows for a simultaneous real-time assessment of the microvasculature. Using in-house built ultra-low surface area dialyzers and miniaturized extracorporeal circuit, we successfully dialyzed male Wistar Kyoto rats and combined this with a simultaneous intravital microscopic observation of the EDL microvasculature. Our results show that even in healthy animals, a euvolemic HD procedure can induce a significant systemic hemodynamic disturbance and induce disruption of microvascular perfusion (as evidence by a reduction in the proportion of the observed microcirculation receiving blood flow). This study, using a new small animal hemodialysis model, has allowed direct demonstration that microvascular blood flow in tissue in skeletal muscle is acutely reduced during HD, potentially in concert with other microvascular beds. It shows that preclinical small animal models can be used to further investigate HD-induced ischemic organ injury and allow rapid throughput of putative interventions directed at reducing HD-induced multi-organ ischemic injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据