4.7 Article

Determining spatio-temporal characteristics of coseismic travelling ionospheric disturbances (CTID) in near real-time

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-99906-5

关键词

-

资金

  1. French Space Agency (CNES, Project IMAGION)
  2. CNES
  3. IPGP
  4. RFBR [19-05-00889]
  5. Basic Research Program

向作者/读者索取更多资源

This study introduces a novel method for automatic detection and determination of spatio-temporal characteristics of CTID in ionospheric GNSS-data, along with real-time estimation of CTID source location and velocity. Additionally, the concept of real-time travel-time diagrams was developed for the first time to aid in verifying the correlation of CTID with the source and estimating the observed CTID propagation speed.
Earthquakes are known to generate ionospheric disturbances that are commonly referred to as co-seismic travelling ionospheric disturbances (CTID). In this work, for the first time, we present a novel method that enables to automatically detect CTID in ionospheric GNSS-data, and to determine their spatio-temporal characteristics (velocity and azimuth of propagation) in near-real time (NRT), i.e., less than 15 min after an earthquake. The obtained instantaneous velocities allow us to understand the evolution of CTID and to estimate the location of the CTID source in NRT. Furthermore, also for the first time, we developed a concept of real-time travel-time diagrams that aid to verify the correlation with the source and to estimate additionally the propagation speed of the observed CTID. We apply our methods to the Mw7.4 Sanriku earthquake of 09/03/2011 and the Mw9.0 Tohoku earthquake of 11/03/2011, and we make a NRT analysis of the dynamics of CTID driven by these seismic events. We show that the best results are achieved with high-rate 1 Hz data. While the first tests are made on CTID, our method is also applicable for detection and determining of spatio-temporal characteristics of other travelling ionospheric disturbances that often occur in the ionosphere driven by many geophysical phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据