4.7 Article

Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-03619-8

关键词

-

向作者/读者索取更多资源

Molecular dynamics simulation was used to study the adsorption of the anticancer drug DOX on the surface of functionalized carbon nanotubes, showing strong interactions at physiological pH and easier drug release in acidic environments. The solubility of the nanotubes in aqueous solutions significantly increases after functionalization. The drug release process is influenced by pH variations and the protonation states of DOX and FCNT.
In this work, molecular dynamics (MD) simulation is used to study the adsorption of the anticancer drug, doxorubicin (DOX), on the wall or surface of pristine and functionalized carbon nanotubes (FCNTs) in an aqueous solution. Initially, the CNTs were functionalized by tryptophan (Trp) and folic acid (FA), and then the DOX molecules were added to the system. The simulation results showed that the drug molecules can intensely interact with the FCNTs at physiological pH. Furthermore, it was found that as a result of functionalization, the solubility of FCNTs in an aqueous solution increases significantly. The effect of pH variation on drug release from both pristine and FCNTs was also investigated. The obtained results indicated that in acidic environments due to protonation of functional groups (Trp) and as a result of repulsive interaction between the DOX molecule and functional groups, the release of DOX molecules from FCNT's surface is facilitated. The drug release is also strongly dependent on the pH and protonated state of DOX and FCNT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据