4.7 Article

Analysis of newly developed fractal-fractional derivative with power law kernel for MHD couple stress fluid in channel embedded in a porous medium

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-00163-3

关键词

-

资金

  1. Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT
  2. Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 [64A306000005]

向作者/读者索取更多资源

The study investigates the application of fractal-fractional derivatives in the model of couple stress fluid, showing the more general nature of fractal-fractional solutions compared to classical and fractional solutions. Additionally, the fractal-fractional model exhibits better memory effect on the dynamics of couple stress fluid in channel compared to the fractional model of CSF.
Fractal-fractional derivative is a new class of fractional derivative with power Law kernel which has many applications in real world problems. This operator is used for the first time in such kind of fluid flow. The big advantage of this operator is that one can formulate models describing much better the systems with memory effects. Furthermore, in real world there are many problems where it is necessary to know that how much information the system carries. To explain the memory in a system fractal-fractional derivatives with power law kernel is analyzed in the present work. Keeping these motivation in mind in the present paper new concept of fractal-fractional derivative for the modeling of couple stress fluid (CSF) with the combined effect of heat and mass transfer have been used. The magnetohydrodynamics (MHD) flow of CSF is taken in channel with porous media in the presence of external pressure. The constant motion of the left plate generates the CSF motion while the right plate is kept stationary. The non-dimensional fractal-fractional model of couple stress fluid in RiemannLiouville sense with power law is solved numerically by using the implicit finite difference method. The obtained solutions for the present problem have been shown through graphs. The effects of various parameters are shown through graphs on velocity, temperature and concentration fields. The velocity, temperature and concentration profiles of the MHD CSF in channel with porous media decreases for the greater values of both fractional parameter alpha and fractal parameter beta respectively. From the graphical results it can be noticed that the fractal-fractional solutions are more general as compared to classical and fractional solutions of CSF motion in channel. Furthermore, the fractal-fractional model of CSF explains good memory effect on the dynamics of couple stress fluid in channel as compared to fractional model of CSF. Finally, the skin friction, Nusselt number and Sherwood number are evaluated and presented in tabular form.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据