4.7 Article

High sodium ionic conductivity in PEO/PVP solid polymer electrolytes with InAs nanowire fillers

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-99663-5

关键词

-

资金

  1. Lund University

向作者/读者索取更多资源

Solid-state sodium ion batteries are seen as a promising technology for energy storage, but developing suitable solid electrolytes is a challenge. This study introduces a low-cost composite solid polymer electrolyte with added indium arsenide nanowires to improve sodium ion conductivity, explained by a new transport model.
Solid-state sodium ion batteries are frequently referred to as the most promising technology for next-generation energy storage applications. However, developing a suitable solid electrolyte with high ionic conductivity, excellent electrolyte-electrode interfaces, and a wide electrochemical stability window, remains a major challenge. Although solid-polymer electrolytes have attracted great interest due to their low cost, low density and very good processability, they generally have significantly lower ionic conductivity and poor mechanical strength. Here, we report on the development of a low-cost composite solid polymer electrolyte comprised of poly(ethylene oxide), poly(vinylpyrrolidone) and sodium hexafluorophosphate, mixed with indium arsenide nanowires. We show that the addition of 1.0% by weight of indium arsenide nanowires increases the sodium ion conductivity in the polymer to 1.50 x 10(-4) Scm(-1) at 40 degrees C. In order to explain this remarkable characteristic, we propose a new transport model in which sodium ions hop between close-spaced defect sites present on the surface of the nanowires, forming an effective complex conductive percolation network. Our work represents a significant advance in the development of novel solid polymer electrolytes with embedded engineered ultrafast 1D percolation networks for near-future generations of low-cost, high-performance batteries with excellent energy storage capabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据