4.7 Article

Pharmacological modulation of fish-induced depth selection in D. magna: the role of cholinergic and GABAergic signalling

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-98886-w

关键词

-

资金

  1. Spanish Ministry of Science and Innovation projects [CTM201783242-R, PID2020-113371RB-C21]
  2. Centre of Excellence Severo Ochoa [CEX2018-000794-S]
  3. Spanish fellowships [PRE2018-083513, BES2015-075023]
  4. European Social Fund

向作者/读者索取更多资源

Animal behavior is closely linked to individual fitness, with the central nervous system playing a crucial role in regulating responses to stimuli. This study investigated the neurotransmitter systems that modulate phototactic behavior in the freshwater crustacean Daphnia magna in response to fish kairomones. Results showed that neurotransmitters such as acetylcholine, dopamine, and GABA play important roles in mediating behavioral responses to fish kairomones in D. magna.
Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean Daphnia magna have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic D. magna clone (P(1)32,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate D. magna phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABA(A) receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the D. magna behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据