4.7 Article

Improved YOLOv4-tiny network for real-time electronic component detection

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-02225-y

关键词

-

资金

  1. National Key R&D Program of China [2017YFB1303701]
  2. National Key Natural Science Foundation of China [61733001]

向作者/读者索取更多资源

In the electronics industry, the YOLOv4-tiny method is utilized to improve the detection of electronic components, and different network structures are built to enhance accuracy by adaptively integrating middle- and high-level features. The method is validated successfully on an electronic component dataset, showing improved accuracy and high detection speed compared to other mainstream algorithms.
In the electronics industry environment, rapid recognition of objects to be grasped from digital images is essential for visual guidance of intelligent robots. However, electronic components have a small size, are difficult to distinguish, and are in motion on a conveyor belt, making target detection more difficult. For this reason, the YOLOv4-tiny method is used to detect electronic components and is improved. Then, different network structures are built for the adaptive integration of middle- and high-level features to address the phenomenon in which the original algorithm integrates all feature information indiscriminately. The method is deployed on an electronic component dataset for validation. Experimental results show that the accuracy of the original algorithm is improved from 93.74 to 98.6%. Compared with other current mainstream algorithms, such as Faster RCNN, SSD, RefineDet, EfficientDet, and YOLOv4, the method can maintain high detection accuracy at the fastest speed. The method can provide a technical reference for the development of manufacturing robots in the electronics industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据