4.7 Article

In vitro evaluation of chemical decontamination of titanium discs

期刊

SCIENTIFIC REPORTS
卷 11, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-021-02220-3

关键词

-

资金

  1. Osteology foundation [16-078]
  2. TUA

向作者/读者索取更多资源

The study evaluated biofilm removal and cytocompatibility after chemo-mechanical surface decontamination. Alkaline electrized water and citric acid were found to be superior on rough surfaces, while N-acetyl-L-cysteine and alkaline electrized water were better for promoting cytocompatibility.
Peri-implant diseases are caused by bacterial biofilm colonizing implant surfaces. Prevention and management of peri-implant mucositis and peri-implantitis rely on effective biofilm removal. This study aimed to evaluate biofilm removal and cytocompatibility following chemo-mechanical surface decontamination of biofilm-coated titanium discs. Biofilm-coated (Streptococcus gordonii) discs, with either non-modified (smooth) or modified (rough) surfaces, were instrumented using a sterile gauze soaked in one out of four solutions: saline (NaCl), alkaline electrized water (AEW), citric acid (CA) or N-acetyl-l-cysteine (NAC). Non-contaminated, untreated titanium discs served as controls (C). Residual deposits (bacteria and gauze fibers) and cytocompatibility for osteoblast-like cells were evaluated using SEM and immunofluorescence. Cytotoxicity was assessed using WST-8 assay and immunofluorescence. All protocols were equally effective in removing bacteria from smooth surfaces, while AEW and CA were found to be superior at rough surfaces. AEW and NAC were superior in promoting cytocompatibility over NaCl. NAC and CA had a strong cytotoxic effect on osteoblast-like and fibroblast cells. In conclusion, AEW may be beneficial in the decontamination of implant surfaces, effectively removing bacterial biofilm and restoring cytocompatibility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据