4.6 Article

Superior nanopatterns via adjustable nanoimprint lithography on aluminum oxide in high-K thin films with ultraviolet curable polymer

期刊

RSC ADVANCES
卷 12, 期 1, 页码 88-93

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ra08425a

关键词

-

资金

  1. National Research Foundation of Korea [2020R1G1A1013604]
  2. National Research Foundation of Korea [2020R1G1A1013604] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The present study demonstrates that ultraviolet-nanoimprint lithography (UV-NIL) can be used to transfer a one-dimensional nano-pattern onto a high-k aluminum oxide thin film mixed with a UV photocuring agent. The imprinted nano-patterns induce geometric deformations in liquid crystal, creating collective and elastic properties that guide homogeneous alignment. The nanoimprint method allows for easier, faster, and more accurate processing of a large area compared to conventional rubbing methods. Additionally, the optical properties of the nano-imprinted aluminum oxide thin film are superior to conventional commercialized cells, significantly affecting the luminance and color gamut of displays.
The present study substantiate that ultraviolet-nanoimprint lithography (UV-NIL) can be used to transfer a one-dimensional nano-pattern onto a high-k thin film of aluminum oxide mixed with a UV photocuring agent. Polydimethylsiloxane (PDMS) molds fabricated on silicon wafers were made using deep ultraviolet laser interference lithography in order to investigate one-dimension nanopatterns. These imprinted nano-patterns induce geometric deformations in the liquid crystal (LC), creating collective and elastic properties, which act as a guide for homogeneous alignment. The nanoimprint method can process a large area, so it can be processed much easier, faster, and more accurately than the conventional rubbing method. Moreover, the optical properties of the nano-imprinted aluminum oxide (AlO) thin-film are about 1.5p% superior to that of conventional commercialized cells, so it has a high effect on the luminance and color gamut of the display. After pattern imprinting, atomic force microscope (AFM) was performed to confirm the result. We can compared the cycle of AlO mixed with UV photocuring agent PDMS pattern cycle, the period is 776 and 750 nm, the width is 468 and 450 nm, the spacing is 292 and 300 nm, and the height is 40 and 30 nm. The nano-imprinted film appears to replicate the width, amplitude, and spacing of the PDMS template. In addition, X-ray photoelectron spectroscopy was performed to determine the chemical properties of the thin film and it was confirmed that UV irradiation induces oxidation, thus increases the intensity significantly. The binding energies of Al 2p and C-O spectra were situated at 74.27 +/- 0.5 eV and 531.78 +/- 0.5 eV, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据