4.6 Review

Produced Water Treatment with Conventional Adsorbents and MOF as an Alternative: A Review

期刊

MATERIALS
卷 14, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/ma14247607

关键词

adsorbents; adsorption; metal-organic frameworks (MOFs); produced water; sustainability; water treatment

向作者/读者索取更多资源

The increase in produced water volume has led to a complex mix of organic and inorganic pollutants. Adsorption is considered as an effective treatment technique for removing contaminants from produced water. The review focuses on analyzing the removal efficiencies of adsorbents and highlights the potential use of metal-organic frameworks for more efficient treatment.
A large volume of produced water (PW) has been produced as a result of extensive industrialization and rising energy demands. PW comprises organic and inorganic pollutants, such as oil, heavy metals, aliphatic hydrocarbons, and radioactive materials. The increase in PW volume globally may result in irreversible environmental damage due to the pollutants' complex nature. Several conventional treatment methods, including physical, chemical, and biological methods, are available for produced water treatment that can reduce the environmental damages. Studies have shown that adsorption is a useful technique for PW treatment and may be more effective than conventional techniques. However, the application of adsorption when treating PW is not well recorded. In the current review, the removal efficiencies of adsorbents in PW treatment are critically analyzed. An overview is provided on the merits and demerits of the adsorption techniques, focusing on overall water composition, regulatory discharge limits, and the hazardous effects of the pollutants. Moreover, this review highlights a potential alternative to conventional technologies, namely, porous adsorbent materials known as metal-organic frameworks (MOFs), demonstrating their significance and efficiency in removing contaminants. This study suggests ways to overcome the existing limitations of conventional adsorbents, which include low surface area and issues with reuse and regeneration. Moreover, it is concluded that there is a need to develop highly porous, efficient, eco-friendly, cost-effective, mechanically stable, and sustainable MOF hybrids for produced water treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据