4.6 Article

The Preparation and Characterization of Quantum Dots in Polysaccharide Carriers (Starch/Chitosan) as Elements of Smart Packaging and Their Impact on the Growth of Microorganisms in Food

期刊

MATERIALS
卷 14, 期 24, 页码 -

出版社

MDPI
DOI: 10.3390/ma14247732

关键词

starch; chitosan; quantum dots; smart packaging

资金

  1. National Science Centre of Poland [2016/21/B/ST8/02107]
  2. Ministry of Science and Higher Education for the University of Agriculture in Krakow

向作者/读者索取更多资源

Nanocomposite materials with quantum dots were used to develop novel films for food safety and quality, showing their effectiveness in limiting microbial growth in poultry meat and potential for active and smart packaging.
Nanocomposite materials are increasingly commonly used to ensure food safety and quality. Thanks to their unique properties, stemming from the presence of nanoparticles, they are used to develop advanced sensors and biosensors, e.g., for various harmful substances, heavy metals, microorganism growth, and environmental changes in food products. The aim of this study is to produce novel films based on natural resources-potato starch and chitosan-incorporating generated quantum dots of zinc sulfide and cadmium sulfide. The biocomposites were subjected to the following assays: FTIR spectroscopy, UV-VIS spectroscopy, photoluminescence spectroscopy, and SEM/TEM spectroscopy. Their mechanical properties were also analyzed, a colorimetric analysis was performed, and the water content, solubility, and water absorption capacity were determined. A storage test was also performed, using poultry meat covered with the produced films, to assess the microbiological quality. The results confirmed the presence of the quantum dots in the starch-chitosan matrix. The unique optical properties of the films were also demonstrated. It was shown that the composites with nanoparticles limited the growth of selected microorganisms in poultry meat. The food storage time was found to have an impact on the fluorescent properties of the composites. The results point to the possibility of using the produced films as active and smart packaging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据