4.6 Article

Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon

期刊

出版社

SPRINGER LONDON LTD
DOI: 10.1007/s00170-016-8940-6

关键词

Surface defect machining; Diamond turning; Silicon; SPH

资金

  1. EPSRC [EP/K018345/1]
  2. Royal Society-NSFC International Exchange Scheme
  3. Engineering and Physical Sciences Research Council [EP/K018345/1] Funding Source: researchfish
  4. EPSRC [EP/K018345/1] Funding Source: UKRI

向作者/读者索取更多资源

This paper presents the feasibility study of potential application of recently developed surface defect machining (SDM) method in the fabrication of silicon and similar hard and brittle materials using smooth particle hydrodynamics (SPH) simulation approach. Simulation study of inverse parametric analysis was carried out to determine the Drucker-Prager (DP) constitutive model parameters of silicon by analysing the deformed material response behaviour using various DP model parameters. Indentation test simulations were carried out to perform inverse parametric study. SPH approach was exploited to machine silicon using conventional and surface defect machining method. To this end, we delve into opportunities of exploiting SDM through optimised machining quality, reduced machining time and lowering cost. The results of the conventional simulation were compared with the results of experimental diamond turning of silicon. In the SPH simulations, various types of surface defects were introduced on the workpiece prior to machining. Surface defects were equally distributed on the top face of the workpiece. The simulation study encompasses the investigation of chip formation, resultant machining forces, stresses and hydrostatic pressure with and without SDM. The study reveals the SDM process is an effective technique to manufacture hard and brittle materials as well as facilitate increased tool life. The study also divulges the importance of SPH evading the mesh distortion problem and offer natural chip formation during machining of hard and brittle materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据