4.6 Article

Corrosion Behavior of Ultrafine-Grained CoCrFeMnNi High-Entropy Alloys Fabricated by High-Pressure Torsion

期刊

MATERIALS
卷 15, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/ma15031007

关键词

severe plastic deformation; high-pressure torsion (HPT); high-entropy alloys; ultrafine-grained materials (UFG); nanocrystalline materials; passivation; pitting corrosion

向作者/读者索取更多资源

The influence of nanocrystalline structure produced by severe plastic deformation on the corrosion behavior of CoCrFeMnNi alloys was investigated. It was found that the impact of nanocrystalline structure on corrosion behavior was negligible.
The influence of the nanocrystalline structure produced by severe plastic deformation (SPD) on the corrosion behavior of CoCrFeMnNi alloys with Cr contents ranging from 0 to 20 at.% was investigated in aqueous 0.5 M H2SO4 and 3.5% NaCl solutions. The resistance to general corrosion and pitting became higher in both the solutions, with higher passivation capability observed with increasing Cr content, and it is believed that the high corrosion resistance of CoCrFeMnNi alloys can be attributed to the incorporation of the Cr element. However, the impact of the nanocrystalline structure produced by SPD on the corrosion behavior was negligibly small. This is inconsistent with reports on nanocrystalline binary Fe-Cr alloys and stainless steels processed by SPD, where grain refinement by SPD results in higher corrosion resistance. The small change in the corrosion behavior with respect to grain refinement is discussed, based on the passivation process of Fe-Cr alloys and on the influence of the core effects of HEAs on the passivation process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据