4.6 Article

Impact of Methanol Concentration on Properties of Ultra-Nanocrystalline Diamond Films Grown by Hot-Filament Chemical Vapour Deposition

期刊

MATERIALS
卷 15, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/ma15010005

关键词

ultra-nanocrystalline diamond; hot filament chemical vapour deposition; nanoparticles; trans-polyacetylene

向作者/读者索取更多资源

The change in methanol content during the HF CVD process can tune the properties of diamond layers.
Diamond is a very interesting material with a wide range of properties, making it highly applicable, for example, in power electronics, chemo- and biosensors, tools' coatings, and heaters. Due to the high demand for this innovative material based on the properties it is already expected to have, it is important to obtain homogeneous diamond layers for specific applications. Doping is often chosen to modify the properties of layers. However, there is an alternative way to achieve this goal and it is shown in this publication. The presented research results reveal that the change in methanol content during the Hot Filament Chemical Vapour Deposition (HF CVD) process is a sufficient factor to tune the properties of deposited layers. This was confirmed by analysing the properties of the obtained layers, which were determined using Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and an atomic force microscope (AFM), and the results were correlated with those of X-ray photoelectron spectroscopy (XPS). The results showed that the increasing of the concentration of methanol resulted in a slight decrease in the sp(3) phase content. At the same time, the concentration of the -H, -OH, and =O groups increased with the increasing of the methanol concentration. This affirmed that by changing the content of methanol, it is possible to obtain layers with different properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据