4.5 Article

High-resolution deep transferred ASPPU-Net for nuclei segmentation of histopathology images

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11548-021-02497-9

关键词

Deep learning; Dilated convolution; Histopathology image; Nuclei segmentation

资金

  1. Science Engineering and Research Board, Department of Science and Technology [EEG/2018/000323]

向作者/读者索取更多资源

The study introduces a deep learning framework for histopathology image segmentation, utilizing a high-resolution encoder path, an atrous spatial pyramid pooling bottleneck module, and a powerful decoder. Experimental results show that the proposed method outperforms benchmark segmentation models on three histopathology datasets.
Purpose Increasing cancer disease incidence worldwide has become a major public health issue. Manual histopathological analysis is a common diagnostic method for cancer detection. Due to the complex structure and wide variability in the texture of histopathology images, it has been challenging for pathologists to diagnose manually those images. Automatic segmentation of histopathology images to diagnose cancer disease is a continuous exploration field in recent times. Segmentation and analysis for diagnosis of histopathology images by using an efficient deep learning algorithm are the purpose of the proposed method. Method To improve the segmentation performance, we proposed a deep learning framework that consists of a high-resolution encoder path, an atrous spatial pyramid pooling bottleneck module, and a powerful decoder. Compared to the benchmark segmentation models having a deep and thin path, our network is wide and deep that effectively leverages the strength of residual learning as well as encoder-decoder architecture. Results We performed careful experimentation and analysis on three publically available datasets namely kidney dataset, Triple Negative Breast Cancer (TNBC) dataset, and MoNuSeg histopathology image dataset. We have used the two most preferred performance metrics called F1 score and aggregated Jaccard index (AJI) to evaluate the performance of the proposed model. The measured values of F1 score and AJI score are (0.9684, 0.9394), (0.8419, 0.7282), and (0.8344, 0.7169) on the kidney dataset, TNBC histopathology dataset, and MoNuSeg dataset, respectively. Conclusion: Our proposed method yields better results as compared to benchmark segmentation methods on three histopathology datasets. Visual segmentation results justify the high value of the F1 score and AJI scores which indicated that it is a very good prediction by our proposed model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据