4.8 Review

Insight on Organic Molecules in Aqueous Zn-Ion Batteries with an Emphasis on the Zn Anode Regulation

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Chemistry, Applied

Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies

Aruuhan Bayaguud et al.

Summary: Rechargeable aqueous zinc-ion batteries have high power density and low cost, but face challenges such as dendrite formation and interfacial parasitic reactions at the zinc anode, leading to low zinc reversibility and hindering commercialization. Thorough understanding and development of inhibition strategies, including electrode design and electrolyte modification, are crucial for addressing these issues.

JOURNAL OF ENERGY CHEMISTRY (2022)

Article Chemistry, Physical

Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries

Shan Guo et al.

Summary: Electrolyte additive is a key technology in energy storage, especially for aqueous zinc-ion batteries, but there is a lack of systematic research on its features and mechanisms. A comprehensive review on commonly used zinc-ion electrolyte additives is essential for further improvements in this field.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

In-Situ Electrochemically Activated Surface Vanadium Valence in V2C MXene to Achieve High Capacity and Superior Rate Performance for Zn-Ion Batteries

Ying Liu et al.

Summary: This study presents the use of V2C MXene as a potential cathode material for high energy density ZIBs with superior rate capability. By activating the V2CTx cathode, the surface vanadium valence is significantly increased, forming a nanoscale vanadium oxide coating that undergoes multi-electron reactions effectively. The activated V2CTx demonstrates an ultrahigh rate performance and excellent stability, providing insights into the design of high-performance cathode materials for advanced ZIBs.

ADVANCED FUNCTIONAL MATERIALS (2021)

Review Chemistry, Multidisciplinary

Review on Li Deposition in Working Batteries: From Nucleation to Early Growth

Xiao-Ru Chen et al.

Summary: Lithium metal as a promising alternative anode material for high-energy-density batteries is crucial in the new era of advanced energy storage. Understanding the deposition mechanism from nucleation to early growth is essential for improving battery performance and dendrite-free deposition behavior. Various models have been proposed to enhance the insight into the lithium deposition process, opening up new possibilities for practical lithium metal batteries.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents

Junnan Hao et al.

Summary: A similar antisolvent strategy has been used to enhance Zn reversibility and suppress dendrite growth in Zn plating/stripping, with promising results shown in 50% methanol electrolyte. This low-cost strategy can be easily applied to other solvents, demonstrating practical universality and potential for enhancing performance in electrochemistry and energy storage research.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Materials Science, Multidisciplinary

Crossroads in the renaissance of rechargeable aqueous zinc batteries

Junhua Song et al.

Summary: Aqueous zinc batteries are dominating the primary battery market with alkaline chemistries and are now being developed as rechargeable devices for grid-scale energy storage applications. Significant progress has been made in improving cyclability in alkaline, neutral, and mild acidic systems, with a focus on static closed cell designs in this review. Challenges and advancements in developing highly rechargeable alkaline and mild acidic batteries are examined, while flow batteries and open systems like zinc-air batteries are excluded due to space constraints.

MATERIALS TODAY (2021)

Article Multidisciplinary Sciences

A rechargeable zinc-air battery based on zinc peroxide chemistry

Wei Sun et al.

Summary: The study presents a zinc-O-2/zinc peroxide chemistry that operates through a 2e(-)/O-2 process in nonalkaline aqueous electrolytes, allowing highly reversible redox reactions in zinc-air batteries. This innovative ZnO2 chemistry, enabled by water-poor and zinc ion (Zn2+)-rich inner Helmholtz layer, shows superior reversibility and stability compared to alkaline zinc-air batteries.

SCIENCE (2021)

Article Multidisciplinary Sciences

Stable, high-performance, dendrite-free, seawater-based aqueous batteries

Huajun Tian et al.

Summary: This study proposes a universal strategy to overcome metal anode instability issues in aqueous batteries by designing alloyed materials, using Zn-M alloys as model systems. The results show that Zn-Mn alloy anodes can achieve stability over thousands of cycles even under harsh electrochemical conditions, setting a new milestone for developing durable electrodes for aqueous batteries and beyond.

NATURE COMMUNICATIONS (2021)

Review Chemistry, Physical

Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries

Zhehan Yi et al.

Summary: Zinc-ion batteries are considered promising candidates for next-generation energy storage systems due to their high safety, resource availability, and environmental friendliness. However, the instability of the Zn metal anode has hindered their reliable deployment, and efforts have been made to overcome this through electrode structure design, interface modification, and electrolyte/separator optimization. Understanding and categorizing these strategies based on their intrinsic mechanisms are important for the development of novel Zn metal anodes for ZIBs.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Multidisciplinary

Aqueous Rechargeable Metal-Ion Batteries Working at Subzero Temperatures

Yuwei Zhao et al.

Summary: This study discusses the freezing behavior of water and its effects on the subzero performances of ARMBs, summarizes strategies to enhance the subzero temperature performances of ARMBs, and compares the subzero temperature performances of ARMBs and organic electrolyte batteries.

ADVANCED SCIENCE (2021)

Article Chemistry, Physical

Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives

Xiaoxia Guo et al.

Summary: The study found that adding lithium chloride to the electrolyte can effectively suppress the formation of dendrites on the zinc anode, improving the stability and safety of the battery.

ACS ENERGY LETTERS (2021)

Review Multidisciplinary Sciences

Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems

Jingxu Zheng et al.

Summary: Through precise control of crystal growth, it is possible to manipulate the morphology of Zn electrodeposit. Research indicates that the crystal structure of Zn and the solid-electrolyte interphase play crucial roles in its growth.

SCIENCE ADVANCES (2021)

Article Chemistry, Multidisciplinary

Water-Salt Oligomers Enable Supersoluble Electrolytes for High-Performance Aqueous Batteries

Shengying Cai et al.

Summary: This study reports a highly soluble ZnCl2/ZnBr2/Zn(OAc)(2) aqueous electrolyte, which breaks through the physical solubility limit by forming acetate-capped water-salt oligomers, enabling high-performance aqueous dual-ion batteries.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes

Longtao Ma et al.

Summary: By using a ZnF2 solid ion conductor to isolate Zn metal, the hydrogen evolution in Zn metal batteries has been significantly reduced, leading to improved performance and stability of the batteries.

ADVANCED MATERIALS (2021)

Article Chemistry, Physical

Green and low-cost acetate-based electrolytes for the highly reversible zinc anode

Jin Han et al.

Summary: A highly concentrated solution of potassium, lithium, and zinc acetate is proposed as a green Water-in-Salt electrolyte, showing excellent performance, particularly in terms of zinc plating/stripping efficiency and long-term cycling stability. Dual-ion cells using this electrolyte with zinc metal anode and different cathodes demonstrate good discharge capacity and cycling stability at low C-rate.

JOURNAL OF POWER SOURCES (2021)

Article Chemistry, Physical

Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure

Qing Li et al.

Summary: The study highlights the practical issues that may arise when using Zn foil for studying the stability and dendrite formation behavior of Zn anodes, suggesting that a Zn powder/current collector configuration is more practical. The research also reveals that during the aging process of the Zn-P@Cu electrode, hydrogen forms on the surface of Cu and the Zn-P dissolves, leading to morphological changes, which are attributed to galvanic corrosion between Cu and Zn.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

Achieving Stable Molybdenum Oxide Cathodes for Aqueous Zinc-Ion Batteries in Water-in-Salt Electrolyte

Lei Wang et al.

Summary: Introducing a 30 m ZnCl2 water-in-salt electrolyte (WISE) to a MoO3 nanobelt cathode significantly enhances the stability and rate performance of MoO3 cathodes. The Zn/MoO3 cell in WISE demonstrates superior capacity retention and lower capacity fading at higher current densities.

ADVANCED MATERIALS INTERFACES (2021)

Review Chemistry, Physical

Electrolyte Strategies toward Better Zinc-Ion Batteries

Cunxin Liu et al.

Summary: With the increasing demand for large-scale energy storage, high safety and low cost rechargeable zinc-ion batteries are considered as potential substitutes for lithium-ion batteries. However, fundamental issues hinder the development of zinc-based energy storage systems. The electrolyte plays a crucial role in ensuring the compatibility and cycling of battery components, and strategies to address issues such as cathode dissolution, zinc dendrites, corrosion, and hydrogen evolution are discussed.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries

Jiawei Wang et al.

Summary: The research summarized above categorizes and reviews strategies to address challenges related to zinc metal anodes for rechargeable aqueous zinc ion batteries. By focusing on electrochemical and chemical reaction principles, the study aims to provide insights into improving the performance of these batteries and explores prospects for the development of zinc metal anodes.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Multidisciplinary

Surface-Preferred Crystal Plane for a Stable and Reversible Zinc Anode

Miao Zhou et al.

Summary: This study investigates a novel zinc anode with a surface-preferred (002) crystal plane, revealing its characteristics of fewer dendrites, no by-products, and weak hydrogen evolution. This leads to improved stability and reversibility of the battery system.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Design of a Solid Electrolyte Interphase for Aqueous Zn Batteries

Dan Li et al.

Summary: A low-concentration aqueous Zn(OTF)(2)-Zn(NO3)(2) electrolyte was designed to form a robust inorganic ZnF2-Zn-5(CO3)(2)(OH)(6)-organic bilayer SEI, allowing high Coulombic efficiency and energy density. The study achieved a high CE of 99.8% for 200 h in Ti parallel to Zn cells, and a high energy density of 168 Wh kg(-1) with 96.5% retention for 700 cycles in Zn parallel to MnO2 cells with a low Zn/MnO2 capacity ratio of 2:1.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Physical

Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism

Na Wang et al.

Summary: The challenge of water decomposition and dendrite growth in Zn-ion batteries has been addressed through the use of citrate anion additives, extending the lifespan of the battery by approximately 500%. Further research shows that polypyrrole provides additional charge storage capacity, leading to excellent performance in practical applications.

ENERGY STORAGE MATERIALS (2021)

Article Chemistry, Physical

Dendrite-free zinc anode enabled by zinc-chelating chemistry

Minghe Luo et al.

Summary: This study utilized a chelating agent, BIS-TRIS, to regulate the solvation sheath structure of Zn2+ in aqueous Zn-ion batteries, restricting Zn2+ 2D diffusion and inhibiting dendrite growth. Partial substitution of water with chelator also suppressed the hydrogen evolution reaction. This strategy led to the achievement of a stable Zn cell and aqueous Zn/MnO2 battery.

ENERGY STORAGE MATERIALS (2021)

Article Nanoscience & Nanotechnology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Longsheng Cao et al.

Summary: The study introduces an aqueous zinc battery with a solid-electrolyte interphase that enables excellent performance in various tests, demonstrating its potential for practical applications in energy storage.

NATURE NANOTECHNOLOGY (2021)

Article Multidisciplinary Sciences

A universal strategy towards high-energy aqueous multivalent-ion batteries

Xiao Tang et al.

Summary: Rechargeable multivalent-ion batteries, such as those using calcium, magnesium or aluminum, are promising candidates for large-scale electrochemical energy storage. Researchers have developed various aqueous multivalent-ion cells utilizing concentrated aqueous gel electrolytes, sulfur-containing anodes, and high-voltage metal oxide cathodes, showing satisfactory performance and potential for future energy storage technologies.

NATURE COMMUNICATIONS (2021)

Review Chemistry, Physical

Aqueous Rechargeable Multivalent Metal-Ion Batteries: Advances and Challenges

Zhenghui Pan et al.

Summary: Aqueous rechargeable multivalent metal-ion batteries (ARMMBs) show great potential for various energy storage applications, but face challenges such as narrow operating voltage windows and low energy density. Efforts are currently focused on addressing these challenges through the development of new electrode materials and electrolytes, with the main goal being the transition from laboratory prototypes to commercialization/industrialization in the near future.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive

Mengdie Yan et al.

Summary: The addition of PEO in aqueous electrolytes has been found to improve the cycling stability and Coulombic efficiency of Zn anodes, but the overpotential and long-term stability are significantly influenced by different anions. The choice of salt anions in aqueous electrolytes with PEO additives plays a crucial role in tuning the reaction kinetics and stability of Zn anodes.

NANO ENERGY (2021)

Review Chemistry, Physical

Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries

Vivek Verma et al.

Summary: Rechargeable zinc-ion batteries using aqueous electrolytes offer high safety, low cost, and fast charge/discharge rates, but also lead to undesired reactions that result in capacity fade and limited operational lifetimes.

ACS ENERGY LETTERS (2021)

Article Energy & Fuels

Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal-substrate bonding

Jingxu Zheng et al.

Summary: The study presents a novel approach to control reversible metal electrodeposition by promoting oxygen-mediated chemical bonding, leading to improved reversibility and cycle life of aluminum and zinc anodes, ultimately enhancing battery performance.

NATURE ENERGY (2021)

Review Chemistry, Physical

Stabilizing metal battery anodes through the design of solid electrolyte interphases

Qing Zhao et al.

Summary: The solid electrolyte interphase (SEI) is a chemically distinct material phase formed by a combination of electrochemical reduction and chemical reactions at both the explicit and implicit interfaces in all electrochemical cells. Understanding the structure, chemistry, and thermodynamics of the materials that accumulate in such interfacial material phases plays a crucial role in achieving high levels of anode reversibility in secondary batteries. Strategies focusing on the rational design of the SEI at metal anodes, including taking advantage of redox chemistry of electrolyte components and creating artificial SEI outside the cell, are highlighted in the study.
Article Chemistry, Multidisciplinary

Tuning the Electrolyte Solvation Structure to Suppress Cathode Dissolution, Water Reactivity, and Zn Dendrite Growth in Zinc-Ion Batteries

Sailin Liu et al.

Summary: By tuning the solvation structure of the electrolyte and using fire-retardant triethyl phosphate as a cosolvent, the challenges of cathode dissolution, water reactivity, and zinc dendrites in aqueous zinc-ion batteries have been successfully addressed. The optimized electrolyte structure leads to high average Coulombic efficiency in Zn/Cu cells and enables over 1000 cycles at high current density.

ADVANCED FUNCTIONAL MATERIALS (2021)

Article Chemistry, Multidisciplinary

Highly Reversible Aqueous Zinc Batteries enabled by Zincophilic-Zincophobic Interfacial Layers and Interrupted Hydrogen-Bond Electrolytes

Longsheng Cao et al.

Summary: By using a eutectic electrolyte with tin chloride additive, a zincophilic/zincophobic Sn/Zn-5(OH)(8)Cl-2•H2O bilayer interphase is formed, overcoming the challenges of Zn dendritic growth and poor low-temperature performance in aqueous Zn batteries. The eutectic electrolyte enables high Coulombic efficiency and steady charge/discharge performance at low temperatures, showing great potential for practical applications.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive

Peng Sun et al.

Summary: The addition of glucose in ZnSO4 electrolyte can improve the performance of Zn ion batteries by suppressing Zn dendrite growth and side reactions, enhancing stability.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth

Shuo Jin et al.

Summary: A method of crystal growth stabilization using polymer-salt complexes has been proposed to reshape the deposition of crystalline metals, allowing for exceptional morphological control and unprecedented cycle life in rechargeable batteries utilizing zinc as an anode material. Preliminary studies have demonstrated the practical benefits of this approach in Zn-I2 full battery cells.
Article Chemistry, Physical

In Situ Lattice Tunnel Distortion of Vanadium Trioxide for Enhancing Zinc Ion Storage

Junwei Ding et al.

Summary: Research on aqueous zinc-ion batteries is in its early stages due to limited cathode material options, particularly those with tunnel structures. A novel in situ electrochemical lattice distortion of vanadium trioxide (V2O3) is demonstrated for ultrafast Zn2+ storage, showing high capacity, remarkable rate performance, and high energy and power densities. This unique reaction highlights the potential of tunnel-type cathodes for achieving ultrafast zinc ion storage.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Dual-Function Electrolyte Additive for Highly Reversible Zn Anode

Shao-Jian Zhang et al.

Summary: The study introduces a simple method using ethylene diamine tetraacetic acid tetrasodium salt (Na(4)EDTA) to suppress the poor reversibility of the Zn anode in aqueous Zn-ion batteries, effectively inhibiting dendrite growth and hydrogen evolution. Additionally, the added EDTA promotes desolvation of Zn, prolonging the electrode lifespan.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Physical

Tailoring the Stability and Kinetics of Zn Anodes through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte

Mengdie Yan et al.

Summary: This study demonstrates the improvement of zinc anodes in low-cost aqueous electrolytes by adding polymers of different polarities, resulting in over 1300 hours of operation time and high Coulombic efficiency under 2 mA/cm², 2 mAh/cm² conditions.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Chaotropic Anion and Fast-Kinetics Cathode Enabling Low-Temperature Aqueous Zn Batteries

Qiu Zhang et al.

Summary: This study presents synthetic electrolyte/cathode design strategies for low-temperature aqueous Zn batteries, revealing the fundamental correlations between anion chemistries and freezing point depression of water. By utilizing a chaotropic anion, CF3SO3-, a low-temperature zinc electrolyte with high ionic conductivity is achieved, enabling high-performance Zn parallel to V2O5 batteries to deliver a high specific capacity at -30 degrees C with excellent capacity retention after cycles.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

An ultralow-temperature aqueous zinc-ion battery

Tianjiang Sun et al.

Summary: A 4 M Zn(BF4)(2) electrolyte with low freezing point and high ion conductivity has been developed for aqueous zinc-ion batteries, enabling excellent electrochemical performance in a wide temperature range, including record-breaking performance at -95 degrees C. This work provides a simple and green strategy for designing high-performance AZIBs in low-temperature conditions.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte

Yuanjun Zhang et al.

Summary: The study identified and quantified the composition of inactive zinc responsible for capacity loss, leading to the development of an environmentally friendly water/glycerol hybrid electrolyte enabling dendrite-free zinc plating/stripping with high efficiency and safety. Glycerol can suppress side reactions caused by water, resulting in dense and uniform zinc electrodeposition.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Multidisciplinary

High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte

Liwei Jiang et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries

Pengcheng Liang et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Review Chemistry, Multidisciplinary

New Concepts in Electrolytes

Matthew Li et al.

CHEMICAL REVIEWS (2020)

Article Chemistry, Physical

A zinc battery with ultra-flat discharge plateau through phase transition mechanism

Donghong Wang et al.

NANO ENERGY (2020)

Review Multidisciplinary Sciences

Roadmap for advanced aqueous batteries: From design of materials to applications

Dongliang Chao et al.

SCIENCE ADVANCES (2020)

Article Chemistry, Physical

Molecular crowding electrolytes for high-voltage aqueous batteries

Jing Xie et al.

NATURE MATERIALS (2020)

Article Chemistry, Multidisciplinary

Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries

Junnan Hao et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries

Junnan Hao et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Hydrophobic Organic-Electrolyte-Protected Zinc Anodes for Aqueous Zinc Batteries

Longsheng Cao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Stabilizing Zinc Anode Reactions by Polyethylene Oxide Polymer in Mild Aqueous Electrolytes

Yan Jin et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Review Chemistry, Physical

Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries

Ziyi Cao et al.

ADVANCED ENERGY MATERIALS (2020)

Article Multidisciplinary Sciences

Modulating electrolyte structure for ultralow temperature aqueous zinc batteries

Qiu Zhang et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Physical

Energy Storage Chemistry in Aqueous Zinc Metal Batteries

Fang Wan et al.

ACS ENERGY LETTERS (2020)

Editorial Material Chemistry, Physical

Toward High-Voltage Aqueous Batteries: Super- or Low-Concentrated Electrolyte?

Dongliang Chao et al.

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Review Chemistry, Multidisciplinary

Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review

Tengsheng Zhang et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Physical

Phase Diagram and Conductivity of Zn(TFSI)2-H2O Electrolytes

Michael S. Ding et al.

JOURNAL OF PHYSICAL CHEMISTRY C (2020)

Article Chemistry, Physical

Advances in Zn-ion batteries via regulating liquid electrolyte

Zhuolin Ye et al.

ENERGY STORAGE MATERIALS (2020)

Review Chemistry, Multidisciplinary

Dendrites in Zn-Based Batteries

Qi Yang et al.

ADVANCED MATERIALS (2020)

Review Chemistry, Physical

Scientific Challenges for the Implementation of Zn-Ion Batteries

Lauren E. Blanc et al.

Article Chemistry, Multidisciplinary

Aqueous zinc ion batteries: focus on zinc metal anodes

Jaeho Shin et al.

CHEMICAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes

Xuesong Xie et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Review Chemistry, Multidisciplinary

Voltage issue of aqueous rechargeable metal-ion batteries

Zhuoxin Liu et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Multidisciplinary

ZnCl2 Water-in-Salt Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode

Lu Zhang et al.

ADVANCED FUNCTIONAL MATERIALS (2019)

Article Chemistry, Multidisciplinary

Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes

Chong Yan et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Energy & Fuels

Building aqueous K-ion batteries for energy storage

Liwei Jiang et al.

NATURE ENERGY (2019)

Article Chemistry, Multidisciplinary

A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries

Ahmad Naveed et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery

Donghong Wang et al.

ACS NANO (2019)

Review Chemistry, Multidisciplinary

Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries

Shuo Huang et al.

CHEMISTRY-A EUROPEAN JOURNAL (2019)

Article Nanoscience & Nanotechnology

A Zn(ClO4)2 Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries

Lijun Wang et al.

ACS APPLIED MATERIALS & INTERFACES (2019)

Article Chemistry, Multidisciplinary

The Three-Dimensional Dendrite-Free Zinc Anode on a Copper Mesh with a Zinc-Oriented Polyacrylamide Electrolyte Additive

Qi Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Editorial Material Multidisciplinary Sciences

How lithium dendrites form in liquid batteries

Jie Xiao

SCIENCE (2019)

Article Multidisciplinary Sciences

Reversible epitaxial electrodeposition of metals in battery anodes

Jingxu Zheng et al.

SCIENCE (2019)

Article Multidisciplinary Sciences

Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation

Huayu Qiu et al.

NATURE COMMUNICATIONS (2019)

Article Chemistry, Physical

A Flexible Solid-State Aqueous Zinc Hybrid Battery with Flat and High-Voltage Discharge Plateau

Zhuoxin Liu et al.

ADVANCED ENERGY MATERIALS (2019)

Article Chemistry, Multidisciplinary

Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte

Ahmad Naveed et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

Water in Rechargeable Multivalent-Ion Batteries: An Electrochemical Pandora's Box

William Manalastas et al.

CHEMSUSCHEM (2019)

Article Chemistry, Multidisciplinary

A flexible rechargeable aqueous zinc manganese-dioxide battery working at-20 °C

Funian Mo et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Review Chemistry, Physical

Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes

Jianhang Huang et al.

SMALL METHODS (2019)

Article Chemistry, Physical

MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries

Hongfei Li et al.

ENERGY STORAGE MATERIALS (2019)

Article Chemistry, Physical

Defect engineering activating (Boosting) zinc storage capacity of MoS2

Wangwang Xu et al.

ENERGY STORAGE MATERIALS (2019)

Article Chemistry, Multidisciplinary

Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase

Zhiming Zhao et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Multidisciplinary

An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode

Zhaowei Guo et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Article Multidisciplinary Sciences

High-capacity aqueous zinc batteries using sustainable quinone electrodes

Qing Zhao et al.

SCIENCE ADVANCES (2018)

Article Chemistry, Physical

Mechanistic Insights of Zn2+ Storage in Sodium Vanadates

Xun Guo et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode

Chong Zhang et al.

CHEMICAL COMMUNICATIONS (2018)

Article Chemistry, Physical

Conductivity, Viscosity, and Their Correlation of a Super Concentrated Aqueous Electrolyte

Michael S. Ding et al.

JOURNAL OF PHYSICAL CHEMISTRY C (2017)

Article Multidisciplinary Sciences

Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities

Ning Zhang et al.

NATURE COMMUNICATIONS (2017)

Review Chemistry, Multidisciplinary

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review

Xin-Bing Cheng et al.

CHEMICAL REVIEWS (2017)

Article Nanoscience & Nanotechnology

Suppression of Dendrite Formation and Corrosion on Zinc Anode of Secondary Aqueous Batteries

Kyung E. K. Sun et al.

ACS APPLIED MATERIALS & INTERFACES (2017)

Article Chemistry, Multidisciplinary

Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery

Ning Zhang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2016)

Article Nanoscience & Nanotechnology

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

Dingchang Lin et al.

NATURE NANOTECHNOLOGY (2016)

Article Multidisciplinary Sciences

Water-in-salt electrolyte enables high-voltage aqueous lithium-ion chemistries

Liumin Suo et al.

SCIENCE (2015)

Review Chemistry, Multidisciplinary

Deep Eutectic Solvents (DESs) and Their Applications

Emma L. Smith et al.

CHEMICAL REVIEWS (2014)

Article Multidisciplinary Sciences

Charge transfer kinetics at the solid-solid interface in porous electrodes

Peng Bai et al.

NATURE COMMUNICATIONS (2014)

Article Chemistry, Inorganic & Nuclear

Formation of Zinc Hydroxide Nitrate by H+-Catalyzed Dissolution-Precipitation

Amir Moezzi et al.

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY (2013)

Article Electrochemistry

Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive

Stephen J. Banik et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2013)

Article Chemistry, Multidisciplinary

Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery

Chengjun Xu et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2012)

Review Chemistry, Multidisciplinary

Effect of Ions on the Structure of Water: Structure Making and Breaking

Yizhak Marcus

CHEMICAL REVIEWS (2009)

Article Electrochemistry

Effect of additives on electrodeposition of nanocrystalline zinc from acidic sulfate solutions

Moucheng Li et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2007)

Article Chemistry, Multidisciplinary

Ionic conduction in Zn3(PO4)2.4H2O enables efficient discharge of the zinc anode in serum

W Shin et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2005)

Review Chemistry, Multidisciplinary

Activity of water in aqueous systems; A frequently neglected property

MJ Blandamer et al.

CHEMICAL SOCIETY REVIEWS (2005)

Article Electrochemistry

Solvated Li-ion transfer at interface between graphite and electrolyte

T Abe et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2004)

Article Chemistry, Physical

State of the art of commercial Li ion batteries

R Moshtev et al.

JOURNAL OF POWER SOURCES (2000)