4.8 Review

A Review of Degradation Mechanisms and Recent Achievements for Ni-Rich Cathode-Based Li-Ion Batteries

期刊

ADVANCED ENERGY MATERIALS
卷 11, 期 48, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202103005

关键词

electrode degradation; graphite anodes; Li-ion batteries; Li-metal anodes; Ni-rich cathodes

资金

  1. China Scholarship Council

向作者/读者索取更多资源

The demand for sustainable energy storage has led to a need for rechargeable lithium-ion batteries with higher specific capacity and safety standards, which has put Ni-rich layered transition metal oxides in the spotlight. While these materials show promise for the next generation of batteries, their instability poses challenges for commercialization. This paper reviews degradation processes in Ni-rich cathode-based LIBs and discusses recent advancements in stabilization strategies for future battery components.
The growing demand for sustainable energy storage devices requires rechargeable lithium-ion batteries (LIBs) with higher specific capacity and stricter safety standards. Ni-rich layered transition metal oxides outperform other cathode materials and have attracted much attention in both academia and industry. Lithium-ion batteries composed of Ni-rich layered cathodes and graphite anodes (or Li-metal anodes) are suitable to meet the energy requirements of the next generation of rechargeable batteries. However, the instability of Ni-rich cathodes poses serious challenges to large-scale commercialization. This paper reviews various degradation processes occurring at the cathode, anode, and electrolyte in Ni-rich cathode-based LIBs. It highlights the recent achievements in developing new stabilization strategies for the various battery components in future Ni-rich cathode-based LIBs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据