4.8 Article

Biocatalysed synthesis planning using data-driven learning

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-28536-w

关键词

-

资金

  1. Swiss National Science Foundation [180544]

向作者/读者索取更多资源

This study extends the data-driven forward reaction and retrosynthetic pathway prediction models based on the Molecular Transformer architecture to biocatalysis. The authors provide a publicly available enzymatic knowledge dataset and aim to facilitate the adoption of enzymatic catalysis in the design of greener chemistry processes.
As of now, only rule-based systems support retrosynthetic planning using biocatalysis, while initial data-driven approaches are limited to forward predictions. Here, the authors extend the data-driven forward reaction as well as retrosynthetic pathway prediction models based on the Molecular Transformer architecture to biocatalysis. Enzyme catalysts are an integral part of green chemistry strategies towards a more sustainable and resource-efficient chemical synthesis. However, the use of biocatalysed reactions in retrosynthetic planning clashes with the difficulties in predicting the enzymatic activity on unreported substrates and enzyme-specific stereo- and regioselectivity. As of now, only rule-based systems support retrosynthetic planning using biocatalysis, while initial data-driven approaches are limited to forward predictions. Here, we extend the data-driven forward reaction as well as retrosynthetic pathway prediction models based on the Molecular Transformer architecture to biocatalysis. The enzymatic knowledge is learned from an extensive data set of publicly available biochemical reactions with the aid of a new class token scheme based on the enzyme commission classification number, which captures catalysis patterns among different enzymes belonging to the same hierarchy. The forward reaction prediction model (top-1 accuracy of 49.6%), the retrosynthetic pathway (top-1 single-step round-trip accuracy of 39.6%) and the curated data set are made publicly available to facilitate the adoption of enzymatic catalysis in the design of greener chemistry processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据