4.8 Article

Coordination of fungal biofilm development by extracellular vesicle cargo

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-26525-z

关键词

-

资金

  1. NIH/NIAID [R01AI073289]

向作者/读者索取更多资源

The fungal pathogen Candida albicans can form biofilms that protect it from drugs and the immune system by releasing extracellular vesicles (EVs) that promote extracellular matrix formation and resistance to antifungal drugs. The study identifies functions for numerous EV cargo proteins in biofilm matrix assembly, drug resistance, fungal cell adhesion, and dissemination. The findings suggest that EVs play a crucial role in coordinating biofilm development in C. albicans.
The fungal pathogen Candida albicans can release extracellular vesicles that promote biofilm formation and antifungal resistance. Here, Zarnowski et al. define functions for numerous vesicle cargo proteins in biofilm matrix assembly and drug resistance, as well as in fungal cell adhesion and dissemination. The fungal pathogen Candida albicans can form biofilms that protect it from drugs and the immune system. The biofilm cells release extracellular vesicles (EVs) that promote extracellular matrix formation and resistance to antifungal drugs. Here, we define functions for numerous EV cargo proteins in biofilm matrix assembly and drug resistance, as well as in fungal cell adhesion and dissemination. We use a machine-learning analysis of cargo proteomic data from mutants with EV production defects to identify 63 candidate gene products for which we construct mutant and complemented strains for study. Among these, 17 mutants display reduced biofilm matrix accumulation and antifungal drug resistance. An additional subset of 8 cargo mutants exhibit defects in adhesion and/or dispersion. Representative cargo proteins are shown to function as EV cargo through the ability of exogenous wild-type EVs to complement mutant phenotypic defects. Most functionally assigned cargo proteins have roles in two or more of the biofilm phases. Our results support that EVs provide community coordination throughout biofilm development in C. albicans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据