4.8 Article

Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-27559-z

关键词

-

资金

  1. Center on the Physics of Cancer Metabolism from the National Cancer Institute [U54CA210184]
  2. NCI [R01 CA257254-01A1]
  3. Berman Fund
  4. Subaru Share the Love Campaign (Bay Ridge Subaru)
  5. Pisani Family Fund

向作者/读者索取更多资源

Copper chelation reduces TNBC metastasis by inactivating Complex IV in sensitive SOX2/OCT4+ cells, showing potential to enrich patient populations in next-generation therapeutic trials.
Copper depletion has been reported to improve survival in patients with triple negative breast cancer (TNBC) but the underlying mechanisms are not completely understood. Here, the authors show that copper chelation reduces mitochondrial oxidative phosphorylation leading to decreased TNBC metastasis. Copper serves as a co-factor for a host of metalloenzymes that contribute to malignant progression. The orally bioavailable copper chelating agent tetrathiomolybdate (TM) has been associated with a significant survival benefit in high-risk triple negative breast cancer (TNBC) patients. Despite these promising data, the mechanisms by which copper depletion impacts metastasis are poorly understood and this remains a major barrier to advancing TM to a randomized phase II trial. Here, using two independent TNBC models, we report a discrete subpopulation of highly metastatic SOX2/OCT4+ cells within primary tumors that exhibit elevated intracellular copper levels and a marked sensitivity to TM. Global proteomic and metabolomic profiling identifies TM-mediated inactivation of Complex IV as the primary metabolic defect in the SOX2/OCT4+ cell population. We also identify AMPK/mTORC1 energy sensor as an important downstream pathway and show that AMPK inhibition rescues TM-mediated loss of invasion. Furthermore, loss of the mitochondria-specific copper chaperone, COX17, restricts copper deficiency to mitochondria and phenocopies TM-mediated alterations. These findings identify a copper-metabolism-metastasis axis with potential to enrich patient populations in next-generation therapeutic trials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据