4.8 Article

Interlayer exciton mediated second harmonic generation in bilayer MoS2

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-27213-8

关键词

-

资金

  1. ANR 2D-vdW-Spin
  2. ANR MagicValley
  3. ANR IXTASE
  4. ANR HiLight
  5. ITN 4PHOTON Marie Sklodowska Curie Grant [721394]
  6. Institut Universitaire de France
  7. MEXT, Japan [JPMXP0112101001]
  8. JSPS KAKENHI [JP20H00354]
  9. CREST, JST [JPMJCR15F3]
  10. RFBR [20-52-16303]
  11. CNRS [20-52-16303]
  12. Foundation for the Advancement of Theoretical Physics and Mathematics BASIS
  13. Marie Curie Actions (MSCA) [721394] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Efficient second-harmonic generation (SHG) occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide monolayers. Here the authors show SHG tuning in bilayer MoS2 - an inversion-symmetric crystal - mediated by interlayer excitons.
Second-harmonic generation (SHG) is a non-linear optical process, where two photons coherently combine into one photon of twice their energy. Efficient SHG occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide monolayers. Here we show tuning of non-linear optical processes in an inversion symmetric crystal. This tunability is based on the unique properties of bilayer MoS2, that shows strong optical oscillator strength for the intra- but also interlayer exciton resonances. As we tune the SHG signal onto these resonances by varying the laser energy, the SHG amplitude is enhanced by several orders of magnitude. In the resonant case the bilayer SHG signal reaches amplitudes comparable to the off-resonant signal from a monolayer. In applied electric fields the interlayer exciton energies can be tuned due to their in-built electric dipole via the Stark effect. As a result the interlayer exciton degeneracy is lifted and the bilayer SHG response is further enhanced by an additional two orders of magnitude, well reproduced by our model calculations. Since interlayer exciton transitions are highly tunable also by choosing twist angle and material combination our results open up new approaches for designing the SHG response of layered materials. Efficient second-harmonic generation (SHG) occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide monolayers. Here the authors show SHG tuning in bilayer MoS2 - an inversion-symmetric crystal - mediated by interlayer excitons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据