4.8 Article

Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds

期刊

NATURE COMMUNICATIONS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-022-28518-y

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [FOR 2688, AV 156/1-1]
  2. 'Independent Project for Postdocs' from the Central Research Development Fund of the University of Bremen

向作者/读者索取更多资源

This study develops a data-driven reduced modeling method for non-linear, high-dimensional physical systems, which reconstructs and predicts the dynamics of the full physical system. The method demonstrates accurate predictive ability on experimental data.
Current data-driven modelling techniques perform reliably on linear systems or on those that can be linearized. Cenedese et al. develop a data-based reduced modeling method for non-linear, high-dimensional physical systems. Their models reconstruct and predict the dynamics of the full physical system. We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear models are obtained as extended normal forms of the reduced dynamics on low-dimensional, attracting spectral submanifolds (SSMs) of the dynamical system. We illustrate the power of data-driven SSM reduction on high-dimensional numerical data sets and experimental measurements involving beam oscillations, vortex shedding and sloshing in a water tank. We find that SSM reduction trained on unforced data also predicts nonlinear response accurately under additional external forcing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据