4.8 Article

Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-26950-0

关键词

-

资金

  1. Pulmonary Fibrosis Foundation [R01 HL095993, R01HL128172, U01TR001810, N01 75N92020C00005]
  2. [T32 GM008666]
  3. [R01 DK068471]
  4. [R01 DK078803]
  5. [U54 DK107977]

向作者/读者索取更多资源

FOXA plays a dual role in endodermal organ development: facilitating signal-dependent lineage initiation via enhancer priming, and enforcing organ cell type-specific gene expression via indirect recruitment by lineage-specific TFs. Only a small subset of organ-specific enhancers are bound and primed by FOXA prior to lineage induction, whereas the majority engage FOXA upon lineage induction without undergoing chromatin priming.
FOXA pioneer transcription factors (TFs) associate with primed enhancers in endodermal organ precursors. Using a human stem cell model of pancreas differentiation, we here discover that only a subset of pancreatic enhancers is FOXA-primed, whereas the majority is unprimed and engages FOXA upon lineage induction. Primed enhancers are enriched for signal-dependent TF motifs and harbor abundant and strong FOXA motifs. Unprimed enhancers harbor fewer, more degenerate FOXA motifs, and FOXA recruitment to unprimed but not primed enhancers requires pancreatic TFs. Strengthening FOXA motifs at an unprimed enhancer near NKX6.1 renders FOXA recruitment pancreatic TF-independent, induces priming, and broadens the NKX6.1 expression domain. We make analogous observations about FOXA binding during hepatic and lung development. Our findings suggest a dual role for FOXA in endodermal organ development: first, FOXA facilitates signal-dependent lineage initiation via enhancer priming, and second, FOXA enforces organ cell type-specific gene expression via indirect recruitment by lineage-specific TFs. Enhancers for endodermal organs are primed at the chromatin level prior to lineage induction by FOXA pioneer transcription factors; how pervasive this is, is not well known. Here the authors show that only a small subset of organ-specific enhancers are bound and primed by FOXA prior to lineage induction, whereas the majority do not undergo chromatin priming and engage FOXA upon lineage induction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据