4.8 Article

Finger sweat analysis enables short interval metabolic biomonitoring in humans

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-26245-4

关键词

-

资金

  1. Mass Spectrometry Centre of the Faculty of Chemistry, University of Vienna
  2. Hochschuljubilaumsstiftung (HJS)
  3. Vanquish UPLC
  4. University of Vienna
  5. Medical University of Vienna

向作者/读者索取更多资源

Metabotyping using sweat from fingertips is a promising noninvasive tool for precision medicine, overcoming limitations of traditional metabolic analysis. Dynamic metabolic patterns can be assessed through sweat sampling, which is repeatable and reliable, enabling the monitoring of individual response to stimuli.
Biomonitoring of sweat from fingertips overcomes current limitations in time-resolved metabolomic profiling of humans and may prove to become a powerful, noninvasive tool for precision medicine. Here, in a feasibility study of short interval sampling of sweat from fingertips, the authors assay individual dynamic metabolic patterns of endogenous and exogenous molecules. Metabolic biomonitoring in humans is typically based on the sampling of blood, plasma or urine. Although established in the clinical routine, these sampling procedures are often associated with a variety of compliance issues, which are impeding time-course studies. Here, we show that the metabolic profiling of the minute amounts of sweat sampled from fingertips addresses this challenge. Sweat sampling from fingertips is non-invasive, robust and can be accomplished repeatedly by untrained personnel. The sweat matrix represents a rich source for metabolic phenotyping. We confirm the feasibility of short interval sampling of sweat from the fingertips in time-course studies involving the consumption of coffee or the ingestion of a caffeine capsule after a fasting interval, in which we successfully monitor all known caffeine metabolites as well as endogenous metabolic responses. Fluctuations in the rate of sweat production are accounted for by mathematical modelling to reveal individual rates of caffeine uptake, metabolism and clearance. To conclude, metabotyping using sweat from fingertips combined with mathematical network modelling shows promise for broad applications in precision medicine by enabling the assessment of dynamic metabolic patterns, which may overcome the limitations of purely compositional biomarkers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据