4.8 Article

CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-25846-3

关键词

-

资金

  1. Washington University Center for Cellular Imaging (WUCCI) [NIH OD021694]
  2. Washington University School of Medicine
  3. Genome Technology Access Center (GTAC)
  4. Center for Genomic Sciences (CGS) at Washington University
  5. NIH grant [NS041021, OD021694]
  6. Mathers Foundation
  7. Children's Discovery Institute of Washington University
  8. St. Louis Children's Hospital [CORE2015-505, CDI-CORE-2019-813]

向作者/读者索取更多资源

This study reveals that CHD7 promotes chromatin accessibility and enhancer activity in granule cell precursors, regulating morphogenesis of the cerebellar cortex, where its depletion triggers cerebellar polymicrogyria.
Regulation of chromatin plays fundamental roles in the development of the brain. Haploinsufficiency of the chromatin remodeling enzyme CHD7 causes CHARGE syndrome, a genetic disorder that affects the development of the cerebellum. However, how CHD7 controls chromatin states in the cerebellum remains incompletely understood. Using conditional knockout of CHD7 in granule cell precursors in the mouse cerebellum, we find that CHD7 robustly promotes chromatin accessibility, active histone modifications, and RNA polymerase recruitment at enhancers. In vivo profiling of genome architecture reveals that CHD7 concordantly regulates epigenomic modifications associated with enhancer activation and gene expression of topologically-interacting genes. Genome and gene ontology studies show that CHD7-regulated enhancers are associated with genes that control brain tissue morphogenesis. Accordingly, conditional knockout of CHD7 triggers a striking phenotype of cerebellar polymicrogyria, which we have also found in a case of CHARGE syndrome. Finally, we uncover a CHD7-dependent switch in the preferred orientation of granule cell precursor division in the developing cerebellum, providing a potential cellular basis for the cerebellar polymicrogyria phenotype upon loss of CHD7. Collectively, our findings define epigenomic regulation by CHD7 in granule cell precursors and identify abnormal cerebellar patterning upon CHD7 depletion, with potential implications for our understanding of CHARGE syndrome. CHARGE syndrome that affects cerebellar development can be caused by haploinsufficiency of the chromatin remodeling enzyme CHD7; however the precise role of CHD7 remains unknown. Here the authors show CHD7 promotes chromatin accessibility and enhancer activity in granule cell precursors and regulates morphogenesis of the cerebellar cortex, where loss of CHD7 triggers cerebellar polymicrogyria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据