4.8 Article

Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-27160-4

关键词

-

资金

  1. NIH [R01NS100788, R01NS114018]

向作者/读者索取更多资源

The eEF2 kinase plays a crucial role in regulating ribosome availability and processing body abundance by inhibiting translation, impacting the state of ribosomes and playing a key role in sensory neurons.
Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons. Processing bodies are phase separated compartments enriched in translationally repressed mRNAs. Here, Smith et al. show that, in sensory neurons, eukaryotic elongation factor 2 kinase (eEF2K) plays key roles in the regulation of processing body abundance and the formation of translationally inactive ribosomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据