4.8 Article

Vortex clustering, polarisation and circulation intermittency in classical and quantum turbulence

期刊

NATURE COMMUNICATIONS
卷 12, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-021-27382-6

关键词

-

资金

  1. Agence Nationale de la Recherche [GIANTE ANR-18-CE30-0020-01]
  2. Simons Foundation Collaboration grant Wave Turbulence [651471]
  3. GENCI [2019A0072A11003]

向作者/读者索取更多资源

The understanding of turbulent flows presents a challenge in physics, with recent research showing a connection between velocity circulation statistics in quantum and classical turbulence.
The understanding of turbulent flows is one of the biggest current challenges in physics, as no first-principles theory exists to explain their observed spatio-temporal intermittency. Turbulent flows may be regarded as an intricate collection of mutually-interacting vortices. This picture becomes accurate in quantum turbulence, which is built on tangles of discrete vortex filaments. Here, we study the statistics of velocity circulation in quantum and classical turbulence. We show that, in quantum flows, Kolmogorov turbulence emerges from the correlation of vortex orientations, while deviations-associated with intermittency-originate from their non-trivial spatial arrangement. We then link the spatial distribution of vortices in quantum turbulence to the coarse-grained energy dissipation in classical turbulence, enabling the application of existent models of classical turbulence intermittency to the quantum case. Our results provide a connection between the intermittency of quantum and classical turbulence and initiate a promising path to a better understanding of the latter. Turbulent flows may be regarded as an intricate collection of mutually-interacting vortices. Here, authors investigate the statistics of velocity circulation in quantum and classical turbulence and propose a connection between intermittency on both cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据